
这就是OpenAI神秘的Q*?斯坦福:语言模型就是Q函数
这就是OpenAI神秘的Q*?斯坦福:语言模型就是Q函数在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)
在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)
据外媒报道,OpenAI超级对齐团队的2名研究员,因泄露「机密」被正式开除
本文主要内容为提示词工程师的工作实际经验和感悟。详人所略,略人所详。Prompt领域的优秀教程越来越多,基础知识可以参见社区先辈刘海同学:[23.08] 网上疯传的「AI 提示词工程师」到底是什么?
迄今,全球超 200 个模型基于来自 OpenBMB 开源社区的 Ultra Series 数据集(面壁 Ultra 对齐数据集)对齐,数据集包括 UltraFeedback 和 UltraChat,共计月均下载量超 100 万。
大模型对齐新方法,让数学推理能力直接提升9%。
刚刚,OpenAI超级对齐团队负责人官宣开源Transformer调试器。研究人员不用写代码,就能快速探索LLM的内部构造了!
在目前的模型训练范式中,偏好数据的的获取与使用已经成为了不可或缺的一环。在训练中,偏好数据通常被用作对齐(alignment)时的训练优化目标,如基于人类或 AI 反馈的强化学习(RLHF/RLAIF)或者直接偏好优化(DPO),而在模型评估中,由于任务的复杂性且通常没有标准答案,则通常直接以人类标注者或高性能大模型(LLM-as-a-Judge)的偏好标注作为评判标准。
随着大语言模型(LLMs)在近年来取得显著进展,它们的能力日益增强,进而引发了一个关键的问题:如何确保他们与人类价值观对齐,从而避免潜在的社会负面影响?
为了使机器具有人类的想象力,深度生成模型取得了重大进展。这些模型能创造逼真的样本,尤其是扩散模型,在多个领域表现出色。扩散模型解决了其他模型的限制,如 VAEs 的后验分布对齐问题、GANs 的不稳定性、EBMs 的计算量大和 NFs 的网络约束问题。
一位网友公开了他创作的一个可以自主学习的智能体,按照他的设想,这样的智能体将在LLM的加持下迅速成长为无所不能的AGI,而人类如果控制她成长的过程,就不需要专门进行对齐。