
聪明人用DeepSeek的正确姿势
聪明人用DeepSeek的正确姿势一些推理模型的使用技巧和启示
一些推理模型的使用技巧和启示
AI竞赛白热化!Anthropic秘密研发一种与众不同的AI——语言模型与可控推理能力相结合的混合模型。模型包括一个独特的「滑动条」功能,它赋予开发者对计算资源和成本前所未有的控制权。
近日,斯坦福、UC伯克利等多机构联手发布了开源推理新SOTA——OpenThinker-32B,性能直逼DeepSeek-R1-32B。其成功秘诀在于数据规模化、严格验证和模型扩展。
奥特曼回应一切,OpenAI路线图全曝光。GPT-4.5数周发布,成为GPT系最后一个非推理模型。GPT-5将整合o系和GPT系,打造成一个全能系统。最令人兴奋的是,所有人皆可免费用上GPT-5。
开源推理大模型新架构来了,采用与Deepseek-R1/OpenAI o1截然不同的路线: 抛弃长思维链和人类的语言,直接在连续的高维潜空间用隐藏状态推理,可自适应地花费更多计算来思考更长时间。
这一篇文章来源于我自己的困惑而进行的探索和思考,再进行多次讨论后总觉隔靴搔痒,理解不透彻。 而在我自己整理后,发现已经有小伙伴点明了他们的区别。但是因为了解深度的不够,即使告诉了答案,我也无法理解,总有隔靴搔痒之感。
推理大语言模型(LLM),如 OpenAI 的 o1 系列、Google 的 Gemini、DeepSeek 和 Qwen-QwQ 等,通过模拟人类推理过程,在多个专业领域已超越人类专家,并通过延长推理时间提高准确性。推理模型的核心技术包括强化学习(Reinforcement Learning)和推理规模(Inference scaling)。
除了o1/o3,OpenAI另一个尚未公开的内部推理模型曝光了。爆料者正是CEO奥特曼本人。据他透露,与全球顶尖程序员相比,当前这一内部模型的编程能力已达Top50,甚至今年年底将排名第一。
就在刚刚,历史性的一刻出现了。DeepSeek项目在GitHub平台上的Star数,已经超越了OpenAI。热度最高的DeepSeek-V3,Star数如今已达7.7万。
DeepSeek的V3模型仅用557.6万的训练成本,实现了与OpenAI O1推理模型相近的性能,这在全球范围内引发连锁反应。由于不用那么先进的英伟达芯片就能实现AI能力的飞跃,英伟达在1月27日一天跌幅高达17%,市值一度蒸发6000亿美元。