
强迫模型自我争论,递归思考版CoT热度飙升!网友:这不就是大多数推理模型的套路吗?
强迫模型自我争论,递归思考版CoT热度飙升!网友:这不就是大多数推理模型的套路吗?递归思考 + 自我批判,CoRT 能带来 LLM 推理力的飞跃吗?
递归思考 + 自我批判,CoRT 能带来 LLM 推理力的飞跃吗?
在人工智能领域,推理能力的进化已成为通向通用智能的核心挑战。近期,Reinforcement Learning with Verifiable Rewards(RLVR)范式下涌现出一批「Zero」类推理模型,摆脱了对人类显式推理示范的依赖,通过强化学习过程自我学习推理轨迹,显著减少了监督训练所需的人力成本。
随着 Deepseek 等强推理模型的成功,强化学习在大语言模型训练中越来越重要,但在视频生成领域缺少探索。复旦大学等机构将强化学习引入到视频生成领域,经过强化学习优化的视频生成模型,生成效果更加自然流畅,更加合理。并且分别在 VDC(Video Detailed Captioning)[1] 和 VBench [2] 两大国际权威榜单中斩获第一。
推理模型发展正盛,著名 AI 技术博主 Sebastian Raschka 也正在写一本关于推理模型工作方式的新书《Reasoning From Scratch》。
其实……不用大段大段思考,推理模型也能有效推理!
阿里Qwen3凌晨开源,正式登顶全球开源大模型王座!它的性能全面超越DeepSeek-R1和OpenAI o1,采用MoE架构,总参数235B,横扫各大基准。这次开源的Qwen3家族,8款混合推理模型全部开源,免费商用。
全球首个去中心化强化学习训练的32B模型——INTELLECT-2震撼发布!无需授权,就能用自家异构计算资源参与其中,让编码、数学与科学领域的推理性能迈向新高度。
OpenAI 的 o1 系列模型、Deepseek-R1 带起了推理模型的研究热潮,但这些推理模型大多关注数学、代码等专业领域。
在大语言模型(LLMs)竞争日趋白热化的今天,「推理能力」已成为评判模型优劣的关键指标。
DeepSeek-R1是近年来推理模型领域的一颗新星,它不仅突破了传统LLM的局限,还开启了全新的研究方向「思维链学」(Thoughtology)。这份长达142页的报告深入剖析了DeepSeek-R1的推理过程,揭示了其推理链的独特结构与优势,为未来推理模型的优化提供了重要启示。