
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。
大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。
没等来 DeepSeek 官方的 R2,却迎来了一个速度更快、性能不弱于 R1 的「野生」变体!这两天,一个名为「DeepSeek R1T2」的模型火了!这个模型的速度比 R1-0528 快 200%,比 R1 快 20%。除了速度上的显著优势,它在 GPQA Diamond(专家级推理能力问答基准)和 AIME 24(数学推理基准)上的表现均优于 R1,但未达到 R1-0528 的水平。
DeepSeek-R2,终于要来了?大模型竞技场秘密上线了一个叫steve的神秘模型,在对话中透露自己来自DeepSeek。不过,网友们并不满足于知道steve的厂商,开始讨论起了steve的具体身份。
当全球目光都聚焦在OpenAI、Anthropic、谷歌、Meta等明星AI公司时,真正靠大模型落地大规模盈利的,却是一家相对不太知名的公司——Palantir。
近日,一则消息在网络上引发热议。有媒体称,“DeepSeek就AI模型违规关联王一博与‘李爱庆腐败案’,作出道歉。”
第一难当。AI变革遇上IPO盛宴,港股掀起一波资本巨浪。
随着 AI Agent 技术的快速发展,业界许多企业开始在 Agent 方向进行深层次探索,而不仅仅是停留在“大模型 + 工具调用”的简单应用上。
最近「上下文工程」有多火?Andrej Karpathy 为其打 Call,Phil Schmid 介绍上下文工程的文章成为 Hacker News 榜首,还登上了知乎热搜榜。
人工智能(AI),如果可以像人类一样“思考”,或许能够帮助我们理解人类的思维方式,尤其是不同心理状态(如抑郁或焦虑)的人群如何做出决策,进而为人类健康研究提供一个新视角。
虽然旋转位置编码(RoPE)及其变体因其长上下文处理能力而被广泛采用,但将一维 RoPE 扩展到具有复杂时空结构的视频领域仍然是一个悬而未决的挑战。