
Nature子刊:人类又输给了AI,尤其是当它知道你是谁时
Nature子刊:人类又输给了AI,尤其是当它知道你是谁时洛桑联邦理工学院研究团队发现,当GPT-4基于对手个性化信息调整论点时,64%的情况下说服力超过人类。实验通过900人参与辩论对比人机表现,结果显示个性化AI达成一致概率提升81.2%。研究警示LLM可能被用于传播虚假信息,建议利用AI生成反叙事内容应对威胁,但实验环境与真实场景存在差异。
洛桑联邦理工学院研究团队发现,当GPT-4基于对手个性化信息调整论点时,64%的情况下说服力超过人类。实验通过900人参与辩论对比人机表现,结果显示个性化AI达成一致概率提升81.2%。研究警示LLM可能被用于传播虚假信息,建议利用AI生成反叙事内容应对威胁,但实验环境与真实场景存在差异。
北京时间今天凌晨 1 点,今年的 Google I/O 2025 开发者大会正式开启。谷歌最近的大模型技术风头正劲,今年的这场「科技春晚」吸引了全球关注的目光。没有意外,今年的核心主题自然是 AI。会上,谷歌发布或升级了一系列 AI 相关工具和服务,如下图所示。
各位有没有发现,最近大家对大模型已经有些看麻了?反正我是看到相关话题的文章流量、社交平台上的热度,对模型的关注度明显有点降下来了。 比如最近 Qwen3、Gemini2.5、GPT-4.1 和 Grok-3 等这么密集的有明显新进展的优秀模型发布,要是放到 2 年前,铁定是个炸裂的一个月。
检索增强技术在代码及多模态场景中的发挥着重要作用,而向量模型是检索增强体系中的重要组成部分。
在基本物理任务上,前沿AI模型仍会失败!ML研究院的测试案例显示白领将被Ai替代,而制造业等蓝领工作不受影响。未来已来,只是分布得不均匀。
要问最近哪个模型最火,混合专家模型(MoE,Mixture of Experts)绝对是榜上提名的那一个。
「三个点电荷 + Q、-2Q 和 + 3Q 等距放置,哪个向量最能描述作用在 + Q 电荷上的净电力方向?」
在端侧设备上处理长文本常常面临计算和内存瓶颈。
2025 年 5 月,美国加州大学河滨分校 (UC Riverside) 与宾夕法尼亚州立大学 (Penn State University) 联合团队在机器人领域顶级会议 ICRA 2025 上发布最新研究成果 LaMMA-P。
就在刚刚,智源研究员联合多所高校开放三款向量模型,以大优势登顶多项测试基准。其中,BGE-Code-v1直接击穿代码检索天花板,百万行级代码库再也不用怕了!