
首个可保留情感的音频LLM!Meta重磅开源7B-Spirit LM,一网打尽「音频+文本」多模态任务
首个可保留情感的音频LLM!Meta重磅开源7B-Spirit LM,一网打尽「音频+文本」多模态任务Meta最近开源了一个7B尺寸的Spirit LM的多模态语言模型,能够理解和生成语音及文本,可以非常自然地在两种模式间转换,不仅能处理基本的语音转文本和文本转语音任务,还能捕捉和再现语音中的情感和风格。
Meta最近开源了一个7B尺寸的Spirit LM的多模态语言模型,能够理解和生成语音及文本,可以非常自然地在两种模式间转换,不仅能处理基本的语音转文本和文本转语音任务,还能捕捉和再现语音中的情感和风格。
人工智能虽然其提供了广泛的信息,却缺乏解决复杂问题所需的深入、结构化的推理能力,同时还存幻觉的局限。形式逻辑和相关数学工具为 AGI 的逻辑推理能力提供了必要的理论基础和技术支撑。
Scaling Law撞墙,扩展语言智能体的推理时计算实在太难了!破局之道,竟是使用LLM作为世界模型?OSU华人团队发现,使用GPT-4o作为世界模型来支持复杂环境中的规划,潜力巨大。
Copilot 正成为 AI 代码产品的主力军。
今年 4 月,AI 领域大牛 Karpathy 一个仅用 1000 行代码即可在 CPU/fp32 上实现 GPT-2 训练的项目「llm.c」曾经引发机器学习社区的热烈讨论。
近日,DeepMind 团队将水印技术和投机采样(speculative sampling)结合,在为大语言模型加入水印的同时,提升其推理效率,降低推理成本,因此适合用于大规模生产环境。
李飞飞谈到的空间智能,被这家中国独角兽补上关键一环。
Powerful AI 预计会在 2026 年实现,足够强大的 AI 也能够将把一个世纪的科研进展压缩到 5-10 年实现(“Compressed 21st Century”),在他和 Lex Fridman 的最新对谈中,Dario 具体解释了自己对于 Powerful AI 可能带来的机会的理解,以及 scaling law、RL、Compute Use 等模型训练和产品的细节进行了分享
网上关于大模型的文章也很多,但是都不太容易看懂。小枣君今天试着写一篇,争取做到通俗易懂。
近日,Physical Intelligence和星尘智能宣告牵手,在数据和模型层展开合作,推进通用人工智能进入物理世界,共筑世界模型。