
GPT-4准确率最高飙升64%!斯坦福OpenAI重磅研究:全新Meta-Prompting方法让LLM当老板
GPT-4准确率最高飙升64%!斯坦福OpenAI重磅研究:全新Meta-Prompting方法让LLM当老板大模型幻觉问题还有另一种解法?斯坦福联手OpenAI研究人员提出「元提示」新方法,能够让大模型成为全能「指挥家」,汇聚不同专家模型精华,让GPT-4的输出更精准。
大模型幻觉问题还有另一种解法?斯坦福联手OpenAI研究人员提出「元提示」新方法,能够让大模型成为全能「指挥家」,汇聚不同专家模型精华,让GPT-4的输出更精准。
大型语言模型(LLM)虽然在诸多下游任务上展现出卓越的能力,但其实际应用还存在一些问题。其中,LLM 的「幻觉(hallucination)」问题是一个重要缺陷。
智能搜索AI创新健康领域,减低大模型幻觉率,提供更专业、准确的健康信息
大模型长期以来一直存在一个致命的问题,即生成幻觉。由于数据集的复杂性,难免会包含过时和错误的信息,这使得输出质量面临着极大的挑战。过多的重复信息还可能导致大型模型产生偏见,这也算是一种形式的幻觉。
大模型就是「造梦机」!幻觉是LLM与生俱来的特性,而非缺陷。OpenAI科学家Andrej Karpathy独特视角在AI社区掀起了激烈的讨论。
大语言模型「拍马屁」的问题到底要怎么解决?最近,LeCun转发了Meta发布的一篇论文,研究人员提出了新的方法,有效提升了LLM回答问题的事实性和客观性。我们一起来看一下吧。
视觉幻觉是常见于多模态大语言模型的一个典型问题。最近,来自中科大等机构的研究人员提出了首个多模态修正架构「啄木鸟」,可有效解决MLLM输出幻觉的问题。
大规模语言模型在众多下游任务中展现了惊人的能力,但它们在使用中仍然暴露了一些问题。其中,幻觉是目前影响大模型落地的重要问题之一。