自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速
自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速科学技术的快速发展过程中,机器学习研究作为创新的核心驱动力,面临着实验过程复杂、耗时且易出错,研究进展缓慢以及对专门知识需求高的挑战。近年来,LLM 在生成文本和代码方面展现出了强大的能力,为科学研究带来了前所未有的可能性。然而,如何系统化地利用这些模型来加速机器学习研究仍然是一个有待解决的问题。
科学技术的快速发展过程中,机器学习研究作为创新的核心驱动力,面临着实验过程复杂、耗时且易出错,研究进展缓慢以及对专门知识需求高的挑战。近年来,LLM 在生成文本和代码方面展现出了强大的能力,为科学研究带来了前所未有的可能性。然而,如何系统化地利用这些模型来加速机器学习研究仍然是一个有待解决的问题。
姚期智院士领衔,推出大模型新推理框架,CoT“王冠”戴不住了。
《智能涌现》独家获悉,前百度研究院副院长李平的新创业公司VecML,近期已经完成了产品的探索和初步研发。值得注意的是,VecML近期还邀请到了前雅虎和Ebay首席科学家、前Walmart副总裁,和前微软技术高管Jan Pedersen博士,出任VecML首席战略官(CSO)。
LLaMA-Omni能够接收语音指令,同步生成文本和语音响应,响应延迟低至 226ms,低于 GPT-4o 的平均音频响应延迟 320ms。
生成式人工智能在能力、复杂性和实用性方面实现了重大的飞跃,这标志着人类与人工智能的关系将真正发生根本性转变。
在当今这个智能化迅猛发展的时代,人工智能(AI)监测工具已悄然渗透到职场的各个角落,成为雇主们提升生产力的新宠。它们被赋予了革命性的任务:通过精密的数据追踪和分析,优化员工的工作表现。然而,常春藤联盟之一、世界领先的学术教育机构康奈尔大学 (Cornell University) 最新发布的研究却揭示了一个令人意外的现象:这些被寄予厚望的工具,实际上可能会削弱生产力,甚至引发员工的大规模离职。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
多个LLM联合,可以迈向更强大系统!最新研究发现,GPT-4能够提升同伴的性能,能够让数学能力暴涨11.6%。
在这场访谈中,Jeff Dean讲了一些有趣的往事。
提示词工程不再玄学!