机器狗能当羽毛球搭子了!仅靠强化学习从0自学,还涌现出类人回位行为 | Science子刊
机器狗能当羽毛球搭子了!仅靠强化学习从0自学,还涌现出类人回位行为 | Science子刊来和机器狗一起运动不?你的羽毛球搭子来了!无需人工协助,仅靠强化学习,机器狗子就学会了羽毛球哐哐对打。基于强化学习,研究人员开发了机器狗的全身视觉运动控制策略,同步控制腿部(18个自由度)移动,和手臂挥拍动作。
来和机器狗一起运动不?你的羽毛球搭子来了!无需人工协助,仅靠强化学习,机器狗子就学会了羽毛球哐哐对打。基于强化学习,研究人员开发了机器狗的全身视觉运动控制策略,同步控制腿部(18个自由度)移动,和手臂挥拍动作。
多AI智能体系统的复杂构建与优化,长期以来是用智能体解决科研问题和场景落地的瓶颈。来自英国格拉斯哥大学的研究团队发布了全球首个AI智能体自进化开源框架EvoAgentX,通过引入自我进化机制,打破了传统多智能体系统在构建和优化中的限制!
Cursor放出了一个接近1小时的内部团队讨论视频,深度分析了他们用到的技术和思考,使得我们有机会深入了解了 Cursor 团队内部关于训练超人级编程模型的讨论,他们的观点让我重新思考了 AI 辅助编程的未来。这些来自一线研究者和工程师的见解,揭示了当前 AI 编程领域最前沿的挑战和突破方向。
上海交通大学联合中科大在本文中指出:现阶段大模型智能体的主要障碍不在于模型能力不足,而在于其「Agentic ROI」尚未达到实用化门槛。研究团队提出 Agentic ROI(Agentic Return on Investment)这一核心指标,用于衡量一个大模型智能体在真实使用场景中所带来的「信息收益」与其「使用成本」之间的比值:
EfficientLLM项目聚焦LLM效率,提出三轴分类法和六大指标,实验包揽全架构、多模态、微调技术,可为研究人员提供效率与性能平衡的参考。
AI越来越聪明,但如果它们反应慢,效率低,也难以满足我们的需求。
大语言模型遇上加密数据,即使是最新Qwen3也直冒冷汗!
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
来自华盛顿大学、AI2、UC伯克利研究团队证实,「伪奖励」(Spurious Rewards)也能带来LLM推理能力提升的惊喜。
又是一个让程序员狂欢的研究!来自 OpenHands、耶鲁、南加大和斯坦福的研究团队刚刚发布了 LocAgent—— 一个专门用于代码定位的图索引 LLM Agent 框架,直接把代码定位准确率拉到了 92.7% 的新高度。该研究已被 ACL 2025 录用。