
如何让等变神经网络可解释性更强?试试将它分解成「简单表示」
如何让等变神经网络可解释性更强?试试将它分解成「简单表示」神经网络是一种灵活且强大的函数近似方法。而许多应用都需要学习一个相对于某种对称性不变或等变的函数。图像识别便是一个典型示例 —— 当图像发生平移时,情况不会发生变化。等变神经网络(equivariant neural network)可为学习这些不变或等变函数提供一个灵活的框架。
神经网络是一种灵活且强大的函数近似方法。而许多应用都需要学习一个相对于某种对称性不变或等变的函数。图像识别便是一个典型示例 —— 当图像发生平移时,情况不会发生变化。等变神经网络(equivariant neural network)可为学习这些不变或等变函数提供一个灵活的框架。
PolygonGNN是一种新型框架,用于学习包括单一和多重多边形在内的多边形几何体的表征,它通过异质可见图来捕捉多边形内外的空间关系,并利用图神经网络有效处理这些关系,以提高计算效率和泛化能力。该框架在五个数据集上表现出色,证明了其在捕捉多边形几何体有用表征方面的有效性。
爆火神经网络架构KAN,上新了!
让模型具有更加广泛和通用的认知能力,是当前人工智能(AI)领域发展的重要目标。目前流行的大模型路径是基于 Scaling Law (尺度定律) 去构建更大、更深和更宽的神经网络提升模型的表现,可称之为 “基于外生复杂性” 的通用智能实现方法。然而,这一路径也面临着一些难以克服的困境,例如高昂的计算资源消耗和能源消耗,并且在可解释性方面存在不足。
近日,来自佐治亚理工学院的研究人员开发了RTNet,首次表明其「思考方式」与人类非常相似。
2017 年,谷歌在论文《Attention is all you need》中提出了 Transformer,成为了深度学习领域的重大突破。该论文的引用数已经将近 13 万,后来的 GPT 家族所有模型也都是基于 Transformer 架构,可见其影响之广。 作为一种神经网络架构,Transformer 在从文本到视觉的多样任务中广受欢迎,尤其是在当前火热的 AI 聊天机器人领域。
用光训练神经网络,清华成果最新登上了Nature!
没有算法没有实验,从2610篇收录论文中脱颖而出,成为唯一一篇纯理论入选2024 ICML Spotlight的论文。
本文首先简单回顾了『等效交互可解释性理论体系』(20 篇 CCF-A 及 ICLR 论文),并在此基础上,严格推导并预测出神经网络在训练过程中其概念表征及其泛化性的动力学变化,即在某种程度上,我们可以解释在训练过程中神经网络在任意时间点的泛化性及其内在根因。
这是人类首次证明神经网络可以创建自己的地图。