
大模型「幻觉」全无?图神经网络成破解核心,精准预测因果消除「幻觉」
大模型「幻觉」全无?图神经网络成破解核心,精准预测因果消除「幻觉」Alembic首次推出用于企业数据分析和决策支持的无「幻觉」人工智能。
Alembic首次推出用于企业数据分析和决策支持的无「幻觉」人工智能。
2023年3月,如果你偶然进入纽约大学的某个礼堂,可能会以为自己在参加一场纯粹的神经科学会议。事实上,这是一个关于人工智能的研讨会——但你的困惑是可以理解的。演讲者们谈论“切除术”,即常见于动物模型实验中的脑损伤创建手术。他们提到“探测”,比如使用电极来获取大脑信号。他们还展示了语言分析,并引用了心理学中长期以来关于“先天还是后天”的争论。
本文介绍了KAN网络算法的原理和优势,探讨了其在深度学习领域可能引发的范式转变。 • ⚡ KAN网络将可学习的激活函数从神经元移到了神经网络的边上,表现出更高的准确性和更少的参数量 • ???? KAN在数学和物理领域的实验中展现了卓越性能,提供了一种新的科学发现的路径 • ???? KAN具有更快的神经缩放定律和可解释性,为AI领域带来了新的探索可能性
北航的研究团队,用扩散模型“复刻”了一个地球? 在全球的任意位置,模型都能生成多种分辨率的遥感图像,创造出丰富多样的“平行场景”。 而且地形、气候、植被等复杂的地理特征,也全都考虑到了。
一般而言,训练神经网络耗费的计算量越大,其性能就越好。在扩大计算规模时,必须要做个决定:是增多模型参数量还是提升数据集大小 —— 必须在固定的计算预算下权衡此两项因素。
5月17日消息,AI教父Geoffrey Hinton接受访谈。对谈不仅涉及Hinton对大型神经网络、多模态学习、模拟计算、AI安全等技术发展的看法,还有其接触人工智能的经历以及与Ilya初识的回忆。
GPT-4o发布不到一周,首个敢于挑战王者的新模型诞生!最近,Meta团队发布了「混合模态」Chameleon,可以在单一神经网络无缝处理文本和图像。10万亿token训练的34B参数模型性能接近GPT-4V,刷新SOTA。
自Ilya Sutskever官宣离职OpenAI后,他的下一步动作成了大家关注焦点。
最近一周KAN的热度逐渐褪去,正好静下心来仔细学习KAN的原理,收获颇多。
当地时间5月7日,ICLR 2024颁发了自大会举办以来的首个「时间检验奖」!