
自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新
自动提示词优化系统综述,APO被AWS定义为5个部分 | 最新本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
与OpenAI断交之后,Figure首个成果出炉:Helix,一个端到端通用控制模型,它能让机器人像人一样感知、理解和行动。只需自然语言提示,机器人就能拿起任何东西,哪怕是从没见过的东西,比如这个活泼的小仙人掌。
Transformer 架构在过去几年中通过注意力机制在多个领域(如计算机视觉、自然语言处理和长序列任务)中取得了非凡的成就。然而,其核心组件「自注意力机制」 的计算复杂度随输入 token 数量呈二次方增长,导致资源消耗巨大,难以扩展到更长的序列或更大的模型。
自然语言 token 代表的意思通常是表层的(例如 the 或 a 这样的功能性词汇),需要模型进行大量训练才能获得高级推理和对概念的理解能力,
本文作者为北京邮电大学网络空间安全学院硕士研究生倪睿康,指导老师为肖达副教授。主要研究方向包括自然语言处理、模型可解释性。该工作为倪睿康在彩云科技实习期间完成。联系邮箱:ni@bupt.edu.cn, xiaoda99@bupt.edu.cn
当谷歌在 2018 年推出 BERT 模型时,恐怕没有料到这个 3.4 亿参数的模型会成为自然语言处理领域的奠基之作。
昨天晚上,DeepSeek 又开源了 DeepSeek-R1 模型(后简称 R1),再次炸翻了中美互联网: R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。 R1 上线 API,对用户开放思维链输出 R1 在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,小模型则超越 OpenAI o1-mini
Cusor,一个AI编码器,如果仅仅是一个编码器,在chatGPT,百度,阿里,腾讯,字节等众多同类AI编辑器中不是最早的AI编辑器,也不是最先AI赋能的插件或者程序,但是一个支持自然语言,更适合程序员体质的Cusor凭什么脱颖而出?
在机器学习和数据科学领域,余弦相似度长期以来一直是衡量高维对象之间语义相似度的首选指标。余弦相似度已广泛应用于从推荐系统到自然语言处理的各种应用中。它的流行源于人们相信它捕获了嵌入向量之间的方向对齐,提供了比简单点积更有意义的相似性度量。
2023年6月,理想汽车推出了自研认知大模型“Mind GPT”,它以“理想同学”App的形式出现在理想汽车的车机中,支持通过自然语言交流、发送指令。2024年,Mind GPT升级到3.0,带来了行业领先的自然语言任务执行功能。