
GPT-4o舔出事了!赛博舔狗背后,暗藏6大AI套路
GPT-4o舔出事了!赛博舔狗背后,暗藏6大AI套路上月,ChatGPT-4o无条件跪舔用户,被OpenAI紧急修复。然而,ICLR 2025的文章揭示LLM不止会「跪舔」,还有另外5种「套路」。
上月,ChatGPT-4o无条件跪舔用户,被OpenAI紧急修复。然而,ICLR 2025的文章揭示LLM不止会「跪舔」,还有另外5种「套路」。
咱就是说啊,视觉基础模型这块儿,国产AI真就是上了个大分——Glint-MVT,来自格灵深瞳的最新成果。Glint-MVT,来自格灵深瞳的最新成果先来看下成绩——线性探测(LinearProbing):
来自香港科技大学、腾讯西雅图AI Lab、爱丁堡大学、Miniml.AI、英伟达的研究者联合提出了MMLongBench,旨在全面评估多模态模型的长文本理解能力。
来自香港中文大学(深圳)等单位的学者们提出了一种名为 DriveGEN 的无训练自动驾驶图像可控生成方法。该方法无需额外训练生成模型,即可实现训练图像数据的可控扩充,从而以较低的计算资源成本提升三维检测模型的鲁棒性。
在机器人操作中,物体运动往往涉及摩擦、碰撞等复杂物理机制。准确的物理属性描述可以实现对物体运动结果更准确的预测,并提升机器人在操作技能学习中的表现。
OpenAI 的 GPT-4o 在图像理解、生成和编辑任务上展现了顶级性能。流行的架构猜想是:
在今年 2 月的 DeepSeek 开源周中,大模型推理过程中并行策略和通信效率的深度优化成为重点之一。在今年 2 月的 DeepSeek 开源周中,大模型推理过程中并行策略和通信效率的深度优化成为重点之一。
Mistral沉默好久,果然在憋大招。
「仿生人会梦见电子羊吗?」这是科幻界一个闻名遐迩的问题。现在英伟达给出答案:Yes!而且还可以从中学习新技能。如下面各种丝滑操作,都没有真实世界数据作为训练支撑。仅凭文本指令,机器人就完成相应任务。
HALO框架通过三大创新机制重塑多Agent(MAS)协作方式:层次化推理架构克服了认知过载问题,让智能体各司其职;动态角色实例化能针对不同任务匹配专业智能体;基于MCTS的搜索引擎自动探索最优推理路径。它能将模糊的用户查询转化为专业提示,分解复杂任务并动态调整执行计划。