Scaling Law触礁「数据墙」?Epoch AI发文预测LLM到2028年耗尽所有文本数据
Scaling Law触礁「数据墙」?Epoch AI发文预测LLM到2028年耗尽所有文本数据训练数据的数量和质量,对LLM性能的重要性已经是不言自明的事实。然而,Epoch AI近期的一篇论文却给正在疯狂扩展的AI模型们泼了冷水,他们预测,互联网上可用的人类文本数据将在四年后,即2028年耗尽。
训练数据的数量和质量,对LLM性能的重要性已经是不言自明的事实。然而,Epoch AI近期的一篇论文却给正在疯狂扩展的AI模型们泼了冷水,他们预测,互联网上可用的人类文本数据将在四年后,即2028年耗尽。
从大规模网络爬取、精细过滤到去重技术,通过FineWeb的技术报告探索如何打造高质量数据集,为大型语言模型(LLM)预训练提供更优质的性能。
抄袭框架和预训练数据的情况,是更狭义的套壳。
就算是 OpenAI 在舆论场也无法逃过版权保护的呼声。
众所周知,对于 Llama3、GPT-4 或 Mixtral 等高性能大语言模型来说,构建高质量的网络规模数据集是非常重要的。然而,即使是最先进的开源 LLM 的预训练数据集也不公开,人们对其创建过程知之甚少。
GPT-4在为人类选股时,表现竟然超越了大部分人类分析师,和针对金融训练的专业模型?在没有任何上下文的情况下,它们直接就成功分析了财务报表,这一发现让许多业内大咖震惊了。然而好景不长,有AI大牛指出研究中的bug:之所以会这样,很可能是训练数据被污染了。
Alexandr Wang创办的Scale AI是一个为AI模型提供训练数据的数据标注平台,近期完成新一轮10亿美元融资,估值飙升至138亿美元。该公司表示将利用新资金生产丰富的前沿数据,为通向AGI铺平道路。
近年来,「scaling」是计算机视觉研究的主角之一。随着模型尺寸和训练数据规模的增大、学习算法的进步以及正则化和数据增强等技术的广泛应用,通过大规模训练得到的视觉基础网络(如 ImageNet1K/22K 上训得的 Vision Transformer、MAE、DINOv2 等)已在视觉识别、目标检测、语义分割等诸多重要视觉任务上取得了令人惊艳的性能。
Meta最近开源的Llama 3模型再次证明了「数据」是提升性能的关键,但现状是,开源的大模型有一堆,可开源的大规模数据却没多少,而收集、清洗数据又是一项极其费时费力的工作,也导致了大模型预训练技术仍然掌握在少数高端机构的手中。
智东西4月19日消息,Meta推出迄今为止能力最强的开源大模型Llama 3系列,发布8B和70B两个版本。 Llama 3在一众榜单中取得开源SOTA(当前最优效果)。Llama 3 8B在MMLU、GPQA、HumanEval、GSM-8K等多项基准上超过谷歌Gemma 7B和Mistral 7B Instruct。