
首个智慧城市大模型UrbanGPT,全面开源开放|港大&百度
首个智慧城市大模型UrbanGPT,全面开源开放|港大&百度时空预测技术,迎来ChatGPT时刻。
时空预测技术,迎来ChatGPT时刻。
3D生成也有自个儿的人工评测竞技场了~ 来自复旦大学和上海AI lab的研究人员搞了个3DGen-Arena,和大语言模型的Chatbot-Arena、GenAI-Arena等一脉相承,要让大伙儿对3D生成模型来一场公开、匿名的评测
随着大语言模型(LLM)的快速发展,其在文本生成、翻译、总结等任务中的应用日益广泛。如微软前段时间发布的Copilot+PC允许使用者利用生成式AI进行团队内部实时协同合作,通过内嵌大模型应用,文本内容可能会在多个专业团队内部快速流转,对此,为保证内容的高度专业性和传达效率,同时平衡内容追溯、保证文本质量的LLM水印方法显得极为重要。
科学家们把Transformer模型应用到蛋白质序列数据中,试图在蛋白质组学领域复制LLM的成功。本篇文章能够带你了解蛋白质语言模型(pLM)的起源、发展,以及那些尚待解决的问题。
最近几年,随着大语言模型的飞速发展与迭代,科技巨头们都竞相投入巨额财力打造超级计算机(或大规模 GPU 集群)。他们认为,更强大的计算能力是实现更强大 AI 的关键。
为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
36氪从多个独立信源处获悉,字节跳动大语言模型研发技术专家杨红霞,已于近日从字节跳动离职,并开始筹备AI创业项目。
以 OpenAI 的 GPT 系列模型为代表的大语言模型(LLM)掀起了新一轮 AI 应用浪潮,但是 LLM 推理的高昂成本一直困扰着业务团队。
在 AI 领域,扩展定律(Scaling laws)是理解 LM 扩展趋势的强大工具,其为广大研究者提供了一个准则,该定律在理解语言模型的性能如何随规模变化提供了一个重要指导。
近日,西交微软北大联合提出信息密集型训练大法,使用纯数据驱动的方式,矫正LLM训练过程产生的偏见,在一定程度上治疗了大语言模型丢失中间信息的问题。