LLM的Prompt竟然是图灵完备的?LLM提示范式的第一个研究 | 重磅
LLM的Prompt竟然是图灵完备的?LLM提示范式的第一个研究 | 重磅近日,伊利诺伊大学香槟分校的研究团队发布了一篇开创性论文,首次从理论层面证明了大语言模型(LLM)中的prompt机制具有图灵完备性。这意味着,通过合适的prompt设计,一个固定大小的Transformer模型理论上可以计算任何可计算函数。这一突破性发现为prompt工程提供了坚实的理论基础。
近日,伊利诺伊大学香槟分校的研究团队发布了一篇开创性论文,首次从理论层面证明了大语言模型(LLM)中的prompt机制具有图灵完备性。这意味着,通过合适的prompt设计,一个固定大小的Transformer模型理论上可以计算任何可计算函数。这一突破性发现为prompt工程提供了坚实的理论基础。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。
在大算力和大数据让基于统计的 AI 模型真正变得强大且有用之前,基于规则的系统长期以来是语言模型的主导范式。
Ichigo[1] 是一个开放的、持续进行的研究项目,目标是将基于文本的大型语言模型(LLM)扩展,使其具备原生的“听力”能力。
近年来,生成式大型语言模型(LLMs)在各类语言任务中的表现令人瞩目,但在医疗领域的应用面临诸多挑战,尤其是在减少诊断错误和避免对患者造成伤害方面。
家人们,苹果一直在悄悄进步! 近期,据小鹿观察,各大科技巨头不仅在提升模型解决复杂问题的能力上竞争激烈,而且还在大语言模型应用于用户界面(UI)交互方面上暗暗发力!
之前我们聊过 RAG 里文档分块 (Chunking) 的挑战,也介绍了 迟分 (Late Chunking) 的概念,它可以在向量化的时候减少上下文信息的丢失。今天,我们来聊聊另一个难题:如何找到最佳的分块断点。
视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。
利用语言模型调用工具,是实现通用目标智能体(general-purpose agents)的重要途径,对语言模型的工具调用能力提出了挑战。