摘要
本发明公开一种基于基于改进SiamFC的人体头肩小目标跟踪方法,该方法对数据集通过背景差分算法完成半自动标注,并使用LabelImage进行手动标注获得丰富的训练样本;引入改进的通道注意力机制SE模块改进特征提取,从而构建SEMC特征提取模块;构建ASPP‑M多尺度空洞卷积模块,基于ASPP模块增加LEDIO模块进行多尺度卷积的预处理,引入SURF‑PCA模块和拉普拉斯滤波器与多尺度特征图进行特征融合;改进SiamFC主干网络AlexNet特征提取模块,引入混合高斯模型进行背景建模,引入SEMC模块和ASPP‑M模块,引入激活函数Relu和LRN局部归一,并增加残差连接。该方法增强了在复杂场景下人体头肩目标的跟踪能力;缓解网络训练时可能出现的梯度消失情形。