摘要
本发明公开了一种基于组合神经网络的电动汽车充换电负荷预测方法,涉及电动汽车负荷预测技术领域。包括以下步骤:S1,采集历史充换电负荷数据,并进行数据预处理;S2,以日期类型、节假日、气温三种因素和充换电负荷数据,构建特征矩阵,作为充电设施负荷预测模型的输入;S3,基于LLE算法,对充换电负荷数据进行降维;S4,搭建基于LLE‑CNN‑GRU混合神经网络的充电设施负荷预测模型;S5,使用基于混合策略的ISSA算法对所述充电设施负荷预测模型进行超参数调优;S6,在优化后的充电设施负荷预测模型中输入所述特征矩阵,进行充换电设施负荷预测。本发明可以提升电动汽车充电设施负荷的预期精度。