摘要
本公开提供了一种多移动机器人分层强化学习运动规划方法与系统,属于机器人及群智能技术领域。该方法构建双层规划器;上层规划器和下层规划器均采用神经网络模型进行动作规划,且通过强化学习进行训练。上层规划器根据局部地图信息和机器人自身物理信息,产生连续时空中机器人的速度作为全局指引速度,传递给下层规划器。下层规划器以最优互惠避障ORCA观测和机器人自身观测作为下层观测,同时以上层规划器提供的全局指引速度作为目标速度,产生机器人动作规划结果。使用本发明能够解决真实室内非结构化环境的多机器人运动规划问题。