
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”今天想跟大家聊一个科技圈和生物医学圈都值得关注的“炸裂”事件。一位顶尖的免疫学专家,Derya Unutmaz博士,刚刚分享了一段让他“震撼到情绪激动”的经历:他把自己和学生撰写的关于MAIT细胞的综述文章,交给o1-Pro进行评估,结果AI给出的评论和洞察碾压了他
今天想跟大家聊一个科技圈和生物医学圈都值得关注的“炸裂”事件。一位顶尖的免疫学专家,Derya Unutmaz博士,刚刚分享了一段让他“震撼到情绪激动”的经历:他把自己和学生撰写的关于MAIT细胞的综述文章,交给o1-Pro进行评估,结果AI给出的评论和洞察碾压了他
就在OpenAI热闹的12天发布会刚刚落下帷幕,谷歌的火力全开新模型Voe2和Gemnini2吸引了全球AI开发者的眼球时,Meta作为三巨头之一则在筹划着一场静悄悄的革命。
1822 年,电学之父法拉第在日记中写到“既然通电能够产生磁力,为什么不能用磁铁产生电流呢?我一定要反过来试试!”。于是在 1831 年,第一台发电机被发明,推动了人类进入电气化时代。
最近,类 o1 模型的出现,验证了长思维链 (CoT) 在数学和编码等推理任务中的有效性。在长思考(long thought)的帮助下,LLM 倾向于探索、反思和自我改进推理过程,以获得更准确的答案。
大模型中,线性层的低比特量化已经逐步落地。然而,对于注意力模块,目前几乎各个模型都还在用高精度(例如 FP16 或 FP32)的注意力运算进行训练和推理。并且,随着大型模型需要处理的序列长度不断增加,Attention(注意力运算)的时间开销逐渐成为主要开销。
Sora、Genie等模型会都用到的Tokenizer,微软下手了—— 开源了一套全能的Video Tokenizer,名为VidTok。
无需额外模型训练、即插即用,全新的视频生成增强算法——Enhance-A-Video来了!
2024年,AI Agent称得上最火热的概念。一方面,大模型赛道降温,并呈现出赢家通吃的局面;另一方面,AI Agent则是大模型应用落地的最佳形式,其能够解决LLMs在具体应用场景中的局限性。
Sakana AI联合MIT、OpenAI等机构提出了全新算法,自动搜索人工生命再达新的里程碑!不需要繁琐手工设计,只通过描述,AI就能发现全新的人造生命体了。
智源最新研究成果BAAIWorm天宝,成功登上Nature子刊封面。它首次实现了秀丽线虫神经系统、身体与环境的闭环仿真,不仅填补生物智能模拟领域空白,还为具身智能发展和AI实际应用开辟了全新路径。
大模型版生命游戏来了。
近年来,基于大型语言模型(LLMs)的多智能体系统(MAS)已成为人工智能领域的研究热点。
近些年来,以 Stable Diffusion 为代表的扩散模型为文生图(T2I)任务树立了新的标准,PixArt,LUMINA,Hunyuan-DiT 以及 Sana 等工作进一步提高了图像生成的质量和效率。然而,目前的这些文生图(T2I)扩散模型受限于模型尺寸和运行时间,仍然很难直接部署到移动设备上。
大语言模型能否解决传统大语言模型在大规模数值数据分析中的局限性问题,助力科学界大科学装置设计、高能物理领域科学计算?
想象这样一个场景:深夜 11 点,你已经忙碌了一天,正准备休息,却想起明天早上还得分享一篇经典论文《Attention Is All You Need》,需要准备幻灯片。这时,你突然想到了自己的 AI 助手 —— PC Agent。
时隔6年,一度被认为濒死的“BERT”杀回来了——
刚刚,ControlNet作者张吕敏又发布了一个的图像打光新项目LuminaBrush,LuminaBrush 是一个构建交互式工具的项目,用于在图像上绘制光照效果。该框架采用两阶段方法:首先将图像转换为均匀光照的外观;然后通过用户的涂鸦生成光照效果。
PromptWizard (PW) 旨在自动化和简化提示优化。它将 LLM 的迭代反馈与高效的探索和改进技术相结合,在几分钟内创建高效的prompts。
随着Sora震撼发布,视频生成技术成为了AI领域新风口。不过,高昂的开发成本是一大瓶颈。国产平台Video Ocean不仅成功登上全球热榜第三,还将视频生成模型开发成本降低50%。而且,模型构建和性能优化方案现已开源,还能免费获得500元GPU算力。
近日,Anthropic开发者关系主管发推表示:万事俱备,2025年将是智能体系统之年!在年终总结的博文中,Anthropic分享了一年来与客户合作构建智能体系统的最佳实践。
对 AI 研究者来说,数学既是一类难题,也是一个标杆,能够成为衡量 AI 技术的发展重要尺度。近段时间,随着 AI 推理能力的提升,使用 AI 来证明数学问题已经成为一个重要的研究探索方向。
研究人员对基于Transformer的Re-ID研究进行了全面回顾和深入分析,将现有工作分类为图像/视频Re-ID、数据/标注受限的Re-ID、跨模态Re-ID以及特殊Re-ID场景,提出了Transformer基线UntransReID,设计动物Re-ID的标准化基准测试,为未来Re-ID研究提供新手册。
上周发出《AI时代写Prompt应该用APPL:为Prompt工程打造的编程语言,来自清华姚班的博士》之后,文章中实现了一个Google DeepMind的OPRO简单版本的优化方法,这让很多读者非常着迷。
目前关于 RLHF 的 scaling(扩展)潜力研究仍然相对缺乏,尤其是在模型大小、数据组成和推理预算等关键因素上的影响尚未被系统性探索。 针对这一问题,来自清华大学与智谱的研究团队对 RLHF 在 LLM 中的 scaling 性能进行了全面研究,并提出了优化策略。
目前o3放出的信息还不多,但还是有一些内容可以做技术分析的。以及o3的重要性值得做一个专篇讨论。
在大语言模型(LLM)的发展历程中,思维链(Chain of Thought,CoT)推理无疑是一个重要的里程碑。
扩散模型在可控图像生成方面取得了空前进展,包括图像修补 ,图像着色和图像编辑。基于扩散模型的生成方案可以显著降低劳动力成本,尤其是在基于参考图像序列着色任务上,它可用于漫画创作,动画制作和黑白电影着色。
李飞飞、谢赛宁团队又有重磅发现了:多模态LLM能够记住和回忆空间,甚至内部已经形成了局部世界模型,表现了空间意识!李飞飞兴奋表示,在2025年,空间智能的界限很可能会再次突破。
o1-preview在医疗诊断中远超人类,赛博看病指日可待?
研究团队在最新时间序列预测基准评测TFB的25个数据集上进行了广泛验证,证明了DUET的卓越性能,为各行业的时间序列预测任务提供了全新的解决方案。