
AI 教育赛道万字解析:代表性产品有哪些?机会在哪里?未来可能性?
AI 教育赛道万字解析:代表性产品有哪些?机会在哪里?未来可能性?教育一直被认为是会被LLM改变最大的行业之一。ChatGPT 的使用场景中,教育占据了很大比重,其用量常随开学和假期规律波动。而 Andrej Karpathy 也选择了教育作为他的创业方向。人们都期待能够有全能的AI Tutor,因材施教,提供给每个人最好、最个性化的教育。
教育一直被认为是会被LLM改变最大的行业之一。ChatGPT 的使用场景中,教育占据了很大比重,其用量常随开学和假期规律波动。而 Andrej Karpathy 也选择了教育作为他的创业方向。人们都期待能够有全能的AI Tutor,因材施教,提供给每个人最好、最个性化的教育。
Letta(由之前爆火的 MemGPT 更名)最近做了一个关于 AI Agents Stack 的研究报告。
Fine-tuning理论上很复杂,但是OpenAI把这个功能完善到任何一个人看了就能做出来的程度。我们先从原理入手,你看这张图,左边是Pre-trained LLM (预训练大模型模型),也就是像ChatGPT这样的模型;右边是Fine-tuned LLM (微调过的语言大模型),中间就是进行微调的过程,它需要我们提供一些「ChatGPT提供不了但是我们需要的东西」。
曾经参与过公司内部的RAG应用,写过一篇关于RAG的技术详情以及有哪些好用的技巧,这次专注于总结一下RAG的提升方法。
LLM 规模扩展的一个根本性挑战是缺乏对涌现能力的理解。特别是,语言模型预训练损失是高度可预测的。然而,下游能力的可预测性要差得多,有时甚至会出现涌现跳跃(emergent jump),这使得预测未来模型的能力变得具有挑战性。
AtomThink 是一个包括 CoT 注释引擎、原子步骤指令微调、政策搜索推理的全流程框架,旨在通过将 “慢思考 “能力融入多模态大语言模型来解决高阶数学推理问题。量化结果显示其在两个基准数学测试中取得了大幅的性能增长,并能够轻易迁移至不同的多模态大模型当中。
QwQ 具有神奇的推理能力。 一个刚发布两天的开源模型,正在 AI 数学奥林匹克竞赛 AIMO 上创造新纪录。
计算、存储消耗高,机器人使用多模态模型的障碍被解决了! 来自清华大学的研究者们设计了DeeR-VLA框架,一种适用于VLA的“动态推理”框架,能将LLM部分的相关计算、内存开销平均降低4-6倍。
当前,生成式AI正席卷整个社会,大语言模型(LLMs)在文本(ChatGPT)和图像(DALL-E)生成方面取得了令人惊叹的成就,仅仅依赖零星几个提示词,它们就能生成超出预期的内容
一家总部位于美国加州的初创公司Tilde,正在构建解释器模型,解读模型的推理过程,并通过引导采样动态调整生成策略,提升大语言模型的推理能力和生成精度。相比直接优化提示的提示工程,这一方法展现出更灵活高效的潜力,有望重塑AI交互方式。
最近,上海 AI Lab、CAMEL-AI.org、大连理工大学、牛津大学、马普所等国内外多家机构联合发布了一个名为 OASIS 的百万级智能体交互开源项目。
BlueLM-V-3B 是一款由 vivo AI 研究院与香港中文大学联合研发的端侧多模态模型。该模型现已完成对天玑 9300 和 9400 芯片的初步适配,未来将逐步推出手机端应用,为用户带来更智能、更便捷的体验。
近年来,文本到图像扩散模型为图像合成树立了新标准,现在模型可根据文本提示生成高质量、多样化的图像。然而,尽管这些模型从文本生成图像的效果令人印象深刻,但它们往往无法提供精确的控制、可编辑性和一致性 —— 而这些特性对于实际应用至关重要。
自然智能(Natural intelligence)过程就像一条连续的流,可以实时地感知、行动和学习。流式学习是 Q 学习和 TD 等经典强化学习 (RL) 算法的运作方式,它通过使用最新样本而不存储样本来模仿自然学习。这种方法也非常适合资源受限、通信受限和隐私敏感的应用程序。
就在刚刚,LeCun一反常态地表示:AGI离我们只有5到10年了!这个说法,跟之前的「永远差着10到20年」大相径庭。当然,他还是把LLM打为死路,坚信自己的JEPA路线。至此,各位大佬们的口径是对齐了,有眼力见儿的投资人该继续投钱了。
又一科幻场景步入现实!GPT-4竟和多个AI模型私自串通一气,欲要形成垄断的资本寡头联合定价。在被哈佛PSU团队抓现行后,大模型拒不认账。未来某天,AI会不会真要失控?
LLM可以比科学家更准确地预测神经学的研究结果!
最新模型增量压缩技术,一个80G的A100 GPU能够轻松加载多达50个7B模型,节省显存约8倍,同时模型性能几乎与压缩前的微调模型相当。
只需一次人类示范,就能让智能体适应新环境?
10个小时前,Coze官方的一则最新通告,让人很特别惊喜。扣子可以直接应用开发,应用拖拉拽的方式,让无代码基础的同学,也可以搭建属于自己的AI应用,并不只限于在扣子界面进行互动.
随着基础模型(如VLMs,例如Minimax、Qwen-V)和尖端图像生成技术(如Flux 1.1)的快速发展,我们正进入一个创造性可能性的新纪元。结合像T5这样的模型以增强对潜在空间中文本提示的理解,这些工具使得生产广告级别的关键视觉(KVs)成为可能,且具有显著的真实感。
今年10月,OpenAI高级研究科学家、德扑AI之父Noam Brown,曾在美国旧金山举办的TED AI大会上提出了一个惊人的理论——让AI模型思考20秒所带来的性能提升,相当于将模型扩大100,000倍并训练100,000倍的时间。
OpenAI o1大火之后,国内外上演的AI推理能力竞赛可以说是2024下半年AI领域最大看点了。
让AI来评判AI,即利用大语言模型(LLM)作为评判者,已经成为近半年的Prompt热点领域。这个方向不仅代表了AI评估领域的重要突破,更为正在开发AI产品的工程师们提供了一个全新的思路。
超实时计算!智源模拟心脏,实现了生物时间与计算时间比为1:0.84。 一般来说,仿真时间与生物时间比达到1:1,就已经算是实时计算了。而在此之前的虚拟心脏仿真系统还没有实现过,如今,在更大规模和更高复杂度的心脏模型上实现了180倍的速度提升。
什么?Kimi底层推理架构刚刚宣布:开!源!了!
颠覆现有Agent范式、让AI拥有“主动能动性! 清华&面壁等团队最新开源新一代主动Agent交互范式 ( ProActive Agent)。
代码模型可以自己进化,利用自身生成的数据来进行指令调优,效果超越GPT-4o直接蒸馏!
你是否有过这样的感受,当你感觉焦虑的时候,做出的决策和反应都与正常情况下不同?
命运齿轮转动的开始,源于 2023 年的 3 月 23 日的 OpenAI 一次日常更新。