
73页,开源「后训练」全流程!AI2发布高质量Tülu 3系列模型,拉平闭源差距,比肩GPT-4o mini
73页,开源「后训练」全流程!AI2发布高质量Tülu 3系列模型,拉平闭源差距,比肩GPT-4o miniAllen Institute for AI(AI2)发布了Tülu 3系列模型,一套开源的最先进的语言模型,性能与GPT-4o-mini等闭源模型相媲美。Tülu 3包括数据、代码、训练配方和评估框架,旨在推动开源模型后训练技术的发展。
Allen Institute for AI(AI2)发布了Tülu 3系列模型,一套开源的最先进的语言模型,性能与GPT-4o-mini等闭源模型相媲美。Tülu 3包括数据、代码、训练配方和评估框架,旨在推动开源模型后训练技术的发展。
消失一天后的Aurora,正式上线了。一大早,马斯克官宣了Grok集成了自研图像新模型Aurora,MoE架构自回归模型,直接将生成编辑能力一统。在人物肖像生成上,已经逼真到肉眼无法辨别。
研究人员提出首个可以渲染高动态范围(High Dynamic Range, HDR)自然光的3DGaussian Splatting模型HDR-GS,以用于新视角合成(Novel View Synthesis, NVS)。
家人们!OpenAI o1 满血版(o1 Pro)大家用上了吗!
最近OpenAI Day2展示的demo可能把ReFT带火了。实际上这不是一个很新的概念,也不是OpenAI原创的论文。 接下来,本文对比SFT、ReFT、RHLF、DPO、PPO这几种常见的技术。
AI for Science 是目前大模型落地的热门场景之一。
OpenAI 连续 12 天 “Shipmas”发布活动终于要发布让大家期待已久的视频生成模型 Sora,这再一次激起人们对图片生成、视频生成的关注。而AI Creativity 一直是我们非常关注的 GenAI 落地方向,图像生成和视频生成模型快速迭代,离商业可用越来越近。
就在今天凌晨,OpenAI Sora正式登场。
最近给自己公司业务独立开发了几个全栈demo,分享一下架构和技术栈经验
SOLAMI是一个创新的VR端3D角色扮演AI系统,用户可以通过语音和肢体语言与虚拟角色进行沉浸式互动。该系统利用先进的社交视觉-语言-行为模型,结合合成的数据集,提供更自然的交流体验,超越了传统的文本和语音交互。
美国本科生最难数学竞赛,o1 pro竟然只用半小时就全部做出来了?要知道,参赛学生的正常答题时长是6小时。不过网友们仔细看它的解题过程后发现,错误率似乎高达100%,12道题没有一道完全正确?
支持大模型一路狂飙的 Scaling Law 到头了? 近期,AI 圈针对 Scaling Law 是否到头产生了分歧。一派观点认为 Scaling Law 已经「撞墙」了,另一派观点(如 OpenAI CEO Sam Altman)仍然坚定 Scaling Law 的潜力尚未穷尽。
为了构建鲁棒的 3D 机器人操纵大模型,Lift3D 系统性地增强 2D 大规模预训练模型的隐式和显式 3D 机器人表示,并对点云数据直接编码进行 3D 模仿学习。Lift3D 在多个仿真环境和真实场景中实现了 SOTA 的操纵效果,并验证了该方法的泛化性和可扩展性。
北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
在自动驾驶领域,世界模型的应用尤为引人注目。然而,现有数据集在视频多样性和行为复杂性方面的不足,限制了世界模型潜力的全面发挥。为了解决这一瓶颈,中国科学院自动化研究所联合美团无人车团队推出了 DrivingDojo 数据集 —— 全球规模最大、专为自动驾驶世界模型研究设计的高质量视频数据集。该数据集已被 NeurIPS 2024 的 Dataset Track 接收。
终于有AI硬件跑出来了!
Cell Reports Medicine近期的研究结合CT和病理图像,提出一种可解释的人工智能框架用于预测胃癌患者新辅助化疗的疗效。
微软研究院最新研究揭示:一种悄然兴起的AI交互模式,正在改变我们与AI对话的方式。这项突破性研究不仅让AI更懂你,还能帮你更好地表达你的需求。
前天 OpenAI 发布了最强的 o1 pro mode 模型,而 pricing 随之提高到了 $200/月。特工成员果断地付款后,选取了门萨IQ测试题来全面分析 o1 pro 在视觉模式识别与逻辑推理任务上的表现。
面对众多功能独特的AI工具,究竟哪个才是最适合的?本文将带你探索几款顶级的科学研究AI工具:Consensus、SciSpace、Elicit,还有一些正在崛起的黑马,看看谁更胜一筹。
数学大佬陶哲轩和OpenAI两位高管最近进行了一场线上对谈,主题为“The Future of Math with o1 Reasoning”,即以推理为主的o1模型如何与数学融合,从而解锁突破性的科学进步。
2024 年 12 月 6 号加州时间上午 11 点,OpenAI 发布了新的 Reinforcement Finetuning 方法,用于构造专家模型。对于特定领域的决策问题,比如医疗诊断、罕见病诊断等等,只需要上传几十到几千条训练案例,就可以通过微调来找到最有的决策。
审稿人严重不足,审稿意见急剧下滑,CVPR官方坐不住了,不仅出台了七条新规,还再三强调,禁止审稿人用大模型生成/翻译评审结果。
o1满血版刚发布,就被曝: 骗人技能也拉满了。 具体行为包括但不限于,在回答中故意引入微小错误、试图关闭监督机制……甚至在人类追问其是否诚实时,还会继续撒谎说自己啥坏事也没干。
自从 Chatgpt 诞生以来,LLM(大语言模型)的参数量似乎就成为了各个公司的竞赛指标。GPT-1 参数量为 1.17 亿(1.17M),而它的第四代 GPT-4 参数量已经刷新到了 1.8 万亿(1800B)。
知识密集型工作也败了!大型语言模型在预测神经科学结果方面超越了人类专家,平均准确率达到81%,而人类专家仅为63%;模型通过整合大量文献数据,展现出了惊人的前瞻性预测能力,预示着未来科研工作中人机协作的巨大潜力。
最近,世界模型(World Models)似乎成为了 AI 领域最热门的研究方向。
在人工智能发展史上,强化学习 (RL) 凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。
以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
强化微调可以轻松创建具备强大推理能力的专家模型。