
用LLaVA解读数万神经元,大模型竟然自己打开了多模态智能黑盒
用LLaVA解读数万神经元,大模型竟然自己打开了多模态智能黑盒以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
强化微调可以轻松创建具备强大推理能力的专家模型。
在 Minecraft 中构造一个能完成各种长序列任务的智能体,颇有挑战性。现有的工作利用大语言模型 / 多模态大模型生成行动规划,以提升智能体执行长序列任务的能力。
目前,这一领域发展迅速,但现有综述多聚焦于单智能体的架构、特定能力或多智能体系统的某些方面,尚缺乏从个体到社会模拟的系统性回顾。因此,本文试图填补这一空白,为该领域提供全面的概述。
融合物理知识的大型视频语言模型PhysVLM,开源了! 它不仅在 PhysGame 基准上展现出最先进的性能,还在通用视频理解基准上(Video-MME, VCG)表现出领先的性能。
在AI迅速发展的技术背景下,如何更高效地利用模型资源成为了一个关键问题。批处理提示(Batch Prompting)作为一种同时处理多个相似查询的技术,虽然在提高计算效率方面显示出巨大潜力,但同时也面临着性能下降的挑战。香港理工大学的研究团队提出的Auto-Demo提示技术,为这一问题带来了突破性的解决方案。
Show Lab 和微软推出 ShowUI,这是一个刚刚开源的 UI Agent 模型,在中文 APP 定位和导航能力上表现出色。通过创新的视觉 token 选择和独特的训练数据构建方法,该模型在有限的训练数据下实现了非常棒的性能。
这两天,北京大学等研究团队发布了一个视频生成的可控生成工作:ConsisID。ConsisID可以实现无需训练Lora的保持参考人脸一致性的文生视频,类似之前图像生成的IP-Adapter-Face和InstantID等工作。虽然之前也有类似的工作,但是ConsisID在效果更上一个台阶。
CNNIC最新发布的《生成式人工智能应用发展报告(2024)》报告则显示,智能体成为生成式人工智能应用主流形态之一,截至今年6月,我国生成式人工智能产品的用户规模达2.3亿人,占整体人口的16.4%。 这意味着,几乎每六个中国人中就有一人正在使用AI产品。AI产品都在向智能体过渡的趋势下,半年后的现在,使用AI智能体的用户可能更多。
DeepMind大模型再登上Nature——
豆包代码大模型,不小心给曝光了!
上个月底,NeurIPS 官方公布了 2024 年度时间检验奖,而且破天荒地同时颁给了两篇论文。
在人类个体能力提升过程中,当其具备了基本的技能之后,会自主地与环境和自身频繁交互,并从中获取经验予以改进。大模型自我进化研究之所以重要,正是源于该思想,并且更倾向于探究大模型自身能力的深度挖掘和扩展。
近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
大模型如今已具有越来越长的上下文,而与之相伴的是推理成本的上升。英伟达最新提出的Star Attention,能够在不损失精度的同时,显著减少推理计算量,从而助力边缘计算。
近日,BitNet系列的原班人马推出了新一代架构:BitNet a4.8,为1 bit大模型启用了4位激活值,支持3 bit KV cache,效率再突破。
几个小时前,著名 AI 研究者、OpenAI 创始成员之一 Andrej Karpathy 发布了一篇备受关注的长推文,其中分享了注意力机制背后一些或许少有人知的故事。
今天,ICLR 2025的discussion phase的ddl已经截止。回看过去14天的讨论过程,可太精彩了!
刚刚,人工智能顶会 NeurIPS 公布了今年的最佳论文(包括 Best Paper 和 Best Paper Runner-up,大会注册者可以看到)。
华中科技大学研发的UniSeg3D算法,能一次性完成三维场景中的六项分割任务,提升了场景理解的全面性和效率。通过任务间的信息共享,优化了性能,为虚拟现实和机器人导航等领域带来新的解决方案。
用大模型“蒸馏”小模型,有新招了!
想要体验文生视频的小伙伴又多了一个选择!
扩散模型和最优传输之间到底存在怎样的联系?对很多人来说还是一个未解之谜。
评估和评价长期以来一直是人工智能 (AI) 和自然语言处理 (NLP) 中的关键挑战。然而,传统方法,无论是基于匹配还是基于词嵌入,往往无法判断精妙的属性并提供令人满意的结果。
我记得很久之前,我们都在讲什么低代码/无代码平台,这个概念很久了,但是,一直没有很好的落地,整体的效果也不算好。
斯坦福大学推出的IKEA Video Manuals数据集,通过4D对齐组装视频和说明书,为AI理解和执行复杂空间任务提供了新的挑战和研究基准,让机器人或AR眼镜指导家具组装不再是梦。
MIT的76页深度报告!AI辅助创新显著增长——这毋庸置疑。但,值得注意的是,AI加剧了不同水平科学家产出的差异,这与科学家的判断力强相关,意味着缺乏判断力的科学家在未来可能会被慢慢淘汰……
如何让机器人拥有人一样的协调行动能力是具身智能不可避免的挑战,而李飞飞团队在CoRL-LEAP研讨会获得最佳论文奖的ReKep对于这一挑战交出了一张亮眼的答卷。
昨天,为大家介绍了生成式对抗网络GAN,今天再来为大家介绍另一个有趣的模型:扩散模型,包括Stability AI、OpenAI、Google Brain在内的多个研究团队基于扩散模型提出了多种创新模型,如以文生图、图像生成视频生成等~
之前领导OpenAI安全团队的北大校友翁荔(Lilian Weng),离职后第一个动作来了。当然是发~博~客。这次的博客一如既往万字干货,妥妥一篇研究综述,翁荔本人直言写起来不容易。主题围绕强化学习中奖励黑客(Reward Hacking)问题展开,即Agent利用奖励函数或环境中的漏洞来获取高奖励,而并未真正学习到预期行为。