首个完整开源的生成式推荐框架MiniOneRec,轻量复现工业级OneRec!
首个完整开源的生成式推荐框架MiniOneRec,轻量复现工业级OneRec!中科大 LDS 实验室何向南、王翔团队与 Alpha Lab 张岸团队联合开源 MiniOneRec,推出生成式推荐首个完整的端到端开源框架,不仅在开源场景验证了生成式推荐 Scaling Law,还可轻量复现「OneRec」,为社区提供一站式的生成式推荐训练与研究平台。
中科大 LDS 实验室何向南、王翔团队与 Alpha Lab 张岸团队联合开源 MiniOneRec,推出生成式推荐首个完整的端到端开源框架,不仅在开源场景验证了生成式推荐 Scaling Law,还可轻量复现「OneRec」,为社区提供一站式的生成式推荐训练与研究平台。
随着生成式 AI 的快速发展,从文本生成图像、视频,到构建完整的三维世界,AI “创造空间” 的能力正以前所未有的速度突破边界。然而,现有 3D 场景生成方法仍存在明显局限:模型往往直接输出每个物体的几何参数(位置、大小、方向等),结果容易出现漂浮、重叠、穿模等问题;场景结构缺乏逻辑一致性,难以编辑或复用,更无法像程序那样精确控制空间关系与生成逻辑。
人类的下一个分裂,从算法开始。 作者|Moonshot 编辑|靖宇 在生成式 AI 的早期叙事里,AI 大模型曾被描绘得理性、冷静、无偏见。 然而,不到三年时间,这个叙事迅速崩塌。事实正在变得越来越清
目前,GRPO 在图像和视频生成的流模型中取得了显著提升(如 FlowGRPO 和 DanceGRPO),已被证明在后训练阶段能够有效提升视觉生成式流模型的人类偏好对齐、文本渲染与指令遵循能力。
2025年末,谷歌通过Kaggle平台,以前所未有的力度,连续推出了两个为期五天的线上强化课程。这不仅仅是两次普通的线上分享,更像是一场由谷歌顶级机器学习(ML)研究员和工程师亲自引领的、深入探索生成式AI及其前沿应用——AI Agents(人工智能代理)的集训。
过去两年,AI靠模仿人类席卷世界。但强化学习之父Richard Sutton却说:「GenAI的时代正在结束。」他带着图灵奖的荣光,加入一家几乎没人听过的公司——ExperienceFlow.AI,他要让AI不靠人类数据喂养,而靠「经验」觉醒。
随着生成式 AI(如 Sora)的发展,合成视频几乎可以以假乱真,带来了深度伪造与虚假信息传播的风险。现有检测方法多依赖表层伪影或数据驱动学习,难以在高质量生成视频中保持较好的泛化能力。其根本原因在于,这些方法大都未能充分利用自然视频所遵循的物理规律,挖掘自然视频的更本质的特征。
智东西11月4日消息,11月3日,美国生成式AI医疗独角兽Hippocratic AI宣布完成1.26亿美元(约合人民币8.97亿元)的C轮融资,谷歌母公司Alphabet旗下独立成长基金CapitalG参投。此轮融资也让该公司的估值达35亿美元(约合人民币249.24亿元),总融资额达到4.04亿美元(约合人民币28.77亿美元)。
生成式AI技术的成熟,让智能编程逐渐成为众多开发者的日常,然而一个大模型API选型的“不可能三角”又随之而来:追求顶级、高速的智能(如GPT-4o/Claude 3.5),就必须接受高昂的调用成本;追求低成本,又往往要在性能和稳定性上做出妥协。开发者“既要又要”的正义,谁能给?
就在今天,OpenAI 与 AWS 官宣建立多年的战略合作伙伴关系。OpenAI 将立即并持续获得 AWS 世界级的基础设施支持,以运行其先进的 AI 工作负载。 AWS 将向 OpenAI 提供配备数十万颗芯片的 Amazon EC2 UltraServers(计算服务器),并具备将计算规模扩展至数千万个 CPU 的能力,以支持其先进的生成式 AI 任务