用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?
用「进化+压力测试」自动生成的竞赛级编程题,各家大模型谁更hold住?在当前评测生成式模型代码能力的浪潮中,传统依赖人工编写的算法基准测试集,正日益暴露出可扩展性不足与数据污染严重两大瓶颈。
在当前评测生成式模型代码能力的浪潮中,传统依赖人工编写的算法基准测试集,正日益暴露出可扩展性不足与数据污染严重两大瓶颈。
让模型先解释,再学Embedding! 来自UIUC、ANU、港科大、UW、TAMU等多所高校的研究人员,最新推出可解释的生成式Embedding框架——GRACE。过去几年,文本表征(Text Embedding)模型经历了从BERT到E5、GTE、LLM2Vec,Qwen-Embedding等不断演进的浪潮。这些模型将文本映射为向量空间,用于语义检索、聚类、问答匹配等任务。
生成式 AI 正在重写 3D 内容的生产流程:从“DCC 工具 + 外包”的线性供给,演进到“资产规模化生成 + 管线可用”的指数供给模式。过去五年,技术范式经历了从实时体积渲染,NeRF,到Score Distillation,3D扩散的快速迭代;需求侧则由游戏与影视,向3D 打印、电商样机、数字人、教育培训、以及AR/VR等长尾场景外溢。
在机器人学习领域,提升基于生成式模型的控制策略(Policy)的性能通常意味着投入巨额成本进行额外的数据采集和模型训练,这极大地限制了机器人能力的快速迭代与升级。面对模型性能的瓶颈,如何在不增加训练负担的情况下,进一步挖掘并增强现有策略的潜力?
工业AI生成式设计软件与方案供应商「设序科技」近日完成数千万元Pre B轮融资,投资方为涌铧投资和广发信德,星涵资本担任长期财务顾问。过去一年,公司已连续完成三轮融资,累计金额超亿元。融资资金将用于研发投入和市场推广,包括海外市场推广。
机器之心报道 编辑:泽南 真正实用化的生成式 AI,应该是这个样子 —— 作为助手可以帮你代打电话,根据你的选项进行应答,还能引导对方转人工: 功能覆盖多个场景,连接大量第三方应用,实现多智能体的一键
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同
2025 年,生成式推荐(Generative Recommender,GR)的发展如火如荼,其背后主要的驱动力源自大语言模型(LLM)那诱人的 scaling law 和通用建模能力(general-purpose modeling),将这种能力迁移至搜推广工业级系统大概是这两年每一个从业者孜孜不倦的追求。
TC-Light 是由中科院自动化所张兆翔教授团队研发的生成式渲染器,能够对具身训练任务中复杂和剧烈运动的长视频序列进行逼真的光照与纹理重渲染,同时具备良好的时序一致性和低计算成本开销,使得它能够帮助减少 Sim2Real Gap 以及实现 Real2Real 的数据增强,帮助获得具身智能训练所需的海量高质量数据。
在当今社会,工作已不仅是谋生手段,更成为个体身份认同与人生意义的核心源泉。而如今,生成式人工智能(GenAI)正以前所未有的速度与广度重塑我们熟悉的工作环境。