多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus
多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
如今,一位软件工程师 Teja Kusireddy 用数据扯开了这场“繁荣”背后的部分真相。他对 200 家 AI 公司进行了逆向工程、反编译代码,并追踪 API 调用,发现许多号称“颠覆性创新”的公司,其核心功能仍依赖第三方服务,只是在外层多套了一层“创新”的壳。市场宣传与实际情况之间的差距令人震惊。
一直以来,关于人工生命(Artificial Life, ALife)的研究致力于回答这样一个问题:生命的复杂性能否在计算系统中自然涌现?
英伟达和谷歌,抢着上天了!
银河通用联合多所大学发布了全球首个跨本体全域环视导航基座大模型NavFoM,让机器人能自己找路,而不再依赖遥控,从而推动具身智能向规模化商业落地演进。
当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?
比Nano Banana更擅长P细节的图像编辑模型来了,还是更懂中文的那种。
Gemini APP 前几天上线了 PPT 生成的能力,我昨天尝试了一下发现相当可以啊。
谷歌遗珠与IBM预言:一文点醒Karpathy,扩散模型或成LLM下一步。
近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。