
Bengio、LeCun再喊话:AGI推理不需要先学语言,LLM路走窄了?
Bengio、LeCun再喊话:AGI推理不需要先学语言,LLM路走窄了?Yoshua Bengio最近在《金融时报》的专栏文章中表示,「AI可以在说话之前学会思考」,实现内部的深思熟虑将成为AGI道路的里程碑。无独有偶,就在几个月前,Yann LeCun也多次表达过类似的观点。
Yoshua Bengio最近在《金融时报》的专栏文章中表示,「AI可以在说话之前学会思考」,实现内部的深思熟虑将成为AGI道路的里程碑。无独有偶,就在几个月前,Yann LeCun也多次表达过类似的观点。
自从 Sora 横空出世,业界便掀起了一场「视频生成模型到底懂不懂物理规律」的争论。图灵奖得主 Yann LeCun 明确表示,基于文本提示生成的逼真视频并不代表模型真正理解了物理世界。之后更是直言,像 Sora 这样通过生成像素来建模世界的方式注定要失败。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。
2024 年的 SaaStr Annual 大会落下帷幕,作为连续参加了三届的 Linkloud 团队,不断看到有越来越多元化的参加者和设展者,尤其华人和出海团队出现在现场,以及在分享嘉宾里也越来越多华人面孔,我们非常欣喜。
被Zoom创始人袁征誉为“SaaS行业的超级碗”的一年一度盛会——SaaStr Annual 2024,于9月11日至12日在旧金山盛大举行。
「相比于强化学习(RL),我确实更喜欢模型预测控制(MPC)。至少从 2016 年起,我就一直在强调这一点。强化学习在学习任何新任务时都需要进行极其大量的尝试。相比之下,模型预测控制是零样本的:如果你有一个良好的世界模型和一个良好的任务目标,模型预测控制就可以在不需要任何特定任务学习的情况下解决新任务。这就是规划的魔力。这并不意味着强化学习是无用的,但它的使用应该是最后的手段。」
小鹏汽车能靠AI翻身?
大模型发展究竟由工程还是科学驱动?
创始人阿里安娜·赫芬顿 (Arianna Huffington) 表示:“重要的是AI从根本上,为我们改善健康和延长寿命。”
Meta首席人工智能科学家、深度学习之父Yann LeCun又开喷了。