
搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好
搜索智能体RAG落地不佳?UIUC开源s3,仅需2.4k样本,训练快效果好当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
在当前大语言模型(LLMs)广泛应用于问答、对话等任务的背景下,如何更有效地结合外部知识、提升模型对复杂问题的理解与解答能力,成为 RAG(Retrieval-Augmented Generation)方向的核心挑战。
根据官方介绍,Augment Agent 是首个转为大型代码库工作的专业软件工程师设计的 AI 编码助手,上下文支持 200K ,也就是 20 万的 token 啊。
Cursor 最强劲敌 Augment Code 昨天晚上发布了他们的最新产品 Augment Agent。
2025 年 3 月 5 日,佳士得拍卖行 “增强智能(Augmented Intelligence)”落下帷幕。这场聚焦 AI 艺术的专场拍卖以728,784 美元总成交额收官,34 件拍品中 28 件成交,成交率达 82%。其中,土耳其裔美国艺术家 Refik Anadol 的《机器幻觉 —— 国际空间站之梦 ——A》以27.7 万美元成为全场最高价拍品。
当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
RAG(Retrieval-Augmented Generation)是一种结合信息检索与文本生成的技术,旨在提高大型语言模型(LLM)在回答复杂查询时的表现。它通过检索相关的上下文信息来增强生成答案的质量和准确性。解读RAG测评:关键指标与应用分析
当前流行的基于嵌入检索的RAG(Retrieval-Augmented Generation)技术由Meta在2020年首次提出,最初应用于开放领域的抽取式问答。
检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。