
Anthropic挖走DeepMind强化学习大牛、AlphaGo核心作者Julian Schrittwieser
Anthropic挖走DeepMind强化学习大牛、AlphaGo核心作者Julian Schrittwieser从 AlphaGo、AlphaZero 、MuZero 到 AlphaCode、AlphaTensor,再到最近的 Gemini 和 AlphaProof,Julian Schrittwieser 的工作成果似乎比他的名字更广为人知。
从 AlphaGo、AlphaZero 、MuZero 到 AlphaCode、AlphaTensor,再到最近的 Gemini 和 AlphaProof,Julian Schrittwieser 的工作成果似乎比他的名字更广为人知。
AI裁判通过反馈生成更公正报告,接近共识。
尽管生成式人工智能(AI)正在改变全球内容生产的格局,但诸多严峻挑战也随之而来:如何准确识别由 AI 生成的内容并防止其被滥用,尤其是在文本生成领域,已成为困扰越来越多人的一大难题。
今年的诺奖将物理和化学两个领域的奖项都颁给了AI成果,这究竟代表着怎样的含义,又会产生怎样的影响?Demis Hassabis在本次专访中提出了自己的见解。
来自 Google DeepMind 的一项研究,为帮助群体在实际辩论中达成共识,提供了一个行之有效的方法——让人工智能(AI)参与,并作为调解员。
在当今科技界,关于人工智能是否被过度炒作的争论从未停息。然而,很少有像谷歌 DeepMind 的安全研究专家和机器学习科学家 Nicholas Carlini 这样的专家,用亲身经历为我们提供了一个独特的视角。通过他的文章,我们看到了大型语言模型(LLM)在实际应用中的强大能力和多样性。这些并非空洞的营销宣传,而是切实可以改变工作方式、提高生产效率、激发创意的工具。
近日,来自谷歌DeepMind的研究人员提出了Michelangelo,「用米开朗基罗的观点」来测量任意上下文长度的基础模型性能。
2024年诺贝尔化学奖公布,一半授予大卫·贝克(David Baker),“以表彰在计算蛋白质设计方面的贡献”;另一半则共同授予德米斯·哈萨比斯(Demis Hassabis,谷歌DeepMind 创始人)和约翰·M·詹珀(John M. Jumper),“以表彰他们在蛋白质结构预测方面的成就”。
Mila、谷歌DeepMind和微软的研究团队近期联合发布了一项重要研究成果,揭示了LLM在推理能力上存在的显著差异。这项研究不仅挑战了我们对LLM推理能力的认知,也提醒我们在开发AI应用时,LLM的选择上要多考虑一些因素,尤其是需要注意Prompt的敏感性和一致性。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。