可攻可防,越狱成功率近90%!六大主流模型全中招 | EMNLP'25
可攻可防,越狱成功率近90%!六大主流模型全中招 | EMNLP'25聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
近日,来自 MetaGPT、蒙特利尔大学和 Mila 研究所、麦吉尔大学、耶鲁大学等机构的研究团队发布 CARE 框架,一个新颖的原生检索增强推理框架,教会 LLM 将推理过程中的上下文事实与模型自身的检索能力有机结合起来。该框架现已全面开源,包括训练数据集、训练代码、模型 checkpoints 和评估代码,为社区提供一套完整的、可复现工作。
全新一代 video-SALMONN 2/2+、首个开源推理增强型音视频理解大模型 video-SALMONN-o1(ICML 2025)、首个高帧率视频理解大模型 F-16(ICML 2025),以及无文本泄漏基准测试 AVUT(EMNLP 2025) 正式发布。新阵容在视频理解能力与评测体系全线突破,全面巩固 SALMONN 家族在开源音视频理解大模型赛道的领先地位。
监督微调(SFT)和强化学习(RL)微调是大模型后训练常见的两种手段。通过强化学习微调大模型在众多 NLP 场景都取得了较好的进展,但是在文本分类场景,强化学习未取得较大的进展,其表现往往不如监督学习。
在大多数人眼中,《我的世界》(Minecraft)只是一款自由度极高的沙盒游戏。 而在香港科技大学(广州)与腾讯联合团队的眼中,它却是一座可以演练通用人工智能的“数字练兵场”。
在 EMNLP 2024 上,我们看到了向量模型的各种创新用法,其中最出人意料的莫过于:文本水印。
作为自然语言处理(NLP)领域的顶级盛会,EMNLP 每年都成为全球研究者的关注焦点。
让大模型能快速、准确、高效地吸收新知识!
EMNLP顶会落下帷幕,各种奖项悉数颁出。最佳长论文奖被北大微信AI团队收入囊中,由北大孙栩老师和微信周杰、孟凡东合作指导。