训练加速40倍、打破“不可能三角”:MiniMax Agent RL 架构解密
训练加速40倍、打破“不可能三角”:MiniMax Agent RL 架构解密随着 MiniMax M2.5 的发布并在社区引发热烈反响,很高兴能借此机会,分享在模型训练背后关于 Agent RL 系统的一些思考。 在大规模、复杂的真实世界场景中跑 RL 时,始终面临一个核心难
随着 MiniMax M2.5 的发布并在社区引发热烈反响,很高兴能借此机会,分享在模型训练背后关于 Agent RL 系统的一些思考。 在大规模、复杂的真实世界场景中跑 RL 时,始终面临一个核心难
CUDA 代码的性能对于当今的模型训练与推理至关重要,然而手动编写优化 CUDA Kernel 需要很高的知识门槛和时间成本。与此同时,近年来 LLM 在 Code 领域获得了诸多成功。
自 Sora 亮相以来,AI 视频的真实感突飞猛进,但可控性仍是瓶颈:模型像才华横溢却随性的摄影师,难以精准执行 “导演指令”。我们能否让 AI 做到: 仅凭一张静态照片,就能 “脑补” 出整个 3D
近来,由AI生成的视频片段以前所未有的视觉冲击力席卷了整个互联网,视频生成模型创造出了许多令人惊叹的、几乎与现实无异的动态画面。
来自MIT Improbable AI Lab的研究者们最近发表了一篇题为《RL's Razor: Why Online Reinforcement Learning Forgets Less》的论文,系统性地回答了这个问题,他们不仅通过大量实验证实了这一现象,更进一步提出了一个简洁而深刻的解释,并将其命名为 “RL's Razor”(RL的剃刀)。
专门适用超大模型、带来2.18倍推理加速,最新投机采样训练框架开源! SGLang团队联合美团搜推平台、Cloudsway.AI开源SpecForge。
学术综述论文在科学研究中发挥着至关重要的作用,特别是在研究文献快速增长的时代。传统的人工驱动综述写作需要研究者审阅大量文章,既耗时又难以跟上最新进展。而现有的自动化综述生成方法面临诸多挑战:
李飞飞空间智能创业公司World Labs,开源一项核心技术!
依稀记得十年前,我在上遥感概论专业课时,老师带我们用ERDAS IMAGINE遥感图像处理软件做地物分类,每个人电脑上先发一段区域的遥感影像,进行人工判读和标注,比如把这个区域影像上的林地标注出来喂给模型,再用这个模型去识别另外一个区域影像中的林地,机器学习中典型的的有监督学习应用。
所谓灾难性遗忘,就是一个在原始任务上训练好的神经网络在训练完新任务后,在原始任务上的表现崩溃式的降低。