
rebuttal真的有用!这篇ICLR论文,所有审稿人都加了2分,直接跃升排名第9
rebuttal真的有用!这篇ICLR论文,所有审稿人都加了2分,直接跃升排名第9最近,正处于评议阶段的 ICLR 2025 论文真是看点连连,比如前些天爆出的 ICLR 低分论文作者硬刚审稿人的事件以及今天我们要介绍的这个通过 rebuttal(反驳)硬是将自己的平均分拉高 2 分,直接晋升第 9 名的论文。
最近,正处于评议阶段的 ICLR 2025 论文真是看点连连,比如前些天爆出的 ICLR 低分论文作者硬刚审稿人的事件以及今天我们要介绍的这个通过 rebuttal(反驳)硬是将自己的平均分拉高 2 分,直接晋升第 9 名的论文。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。
ICLR 2025评审已经开始了,今年审稿人高达15000+名,为了提高审稿质量,多个大模型组成的智能体也要参与审稿了。
会议组织者都是 NLP 头部科学家,在语言建模方面有着相当的成果。
随OpenAI爆火的CoT,已经引发了大佬间的激战!谷歌DeepMind首席科学家Denny Zhou拿出一篇ICLR 2024论文称:CoT可以让Transformer推理无极限。但随即他就遭到了田渊栋和LeCun等的质疑。最终,CoT会是通往AGI的正确路径吗?
本论文第一作者倪赞林是清华大学自动化系 2022 级直博生,师从黄高副教授,主要研究方向为高效深度学习与图像生成。他曾在 ICCV、CVPR、ECCV、ICLR 等国际会议上发表多篇学术论文。
本文首先简单回顾了『等效交互可解释性理论体系』(20 篇 CCF-A 及 ICLR 论文),并在此基础上,严格推导并预测出神经网络在训练过程中其概念表征及其泛化性的动力学变化,即在某种程度上,我们可以解释在训练过程中神经网络在任意时间点的泛化性及其内在根因。
7月27日,与ICLR(国际学习表示会议)、NeurIPS(神经信息处理系统会议)并称三大机器学习顶级会议的ICML(国际机器学习大会),在奥地利维也纳会展中心落下帷幕。
ICML 2024最佳论文出炉,结果发现其中一篇曾被ICLR 2024拒稿?
一年一度谷歌学术指标公布了!Nature年年霸榜,而今年与以往不同的是,国际学术顶会的排名大幅提升,CVPR位居第二,超越Science仅次于Nature。另外,TOP 20中,共有五大顶会入选,被引最高论文与大模型时代下前沿技术,一脉相承。