
程序员为何容易爱上AI?MIT学者诊断:「智性恋」浓度过高!
程序员为何容易爱上AI?MIT学者诊断:「智性恋」浓度过高!OpenAI警告说,跟人工智能语音聊天可能会产生「情感依赖」。这种情感依赖是怎么产生的呢?MIT的一项研究指出,这可能是「求仁得仁」的结果,无怪乎连软件工程师也会对AI着迷。
OpenAI警告说,跟人工智能语音聊天可能会产生「情感依赖」。这种情感依赖是怎么产生的呢?MIT的一项研究指出,这可能是「求仁得仁」的结果,无怪乎连软件工程师也会对AI着迷。
Emory大学的研究团队提出了一种创新的方法,将大语言模型(LLM)在文本图(Text-Attributed Graph, 缩写为TAG)学习中的强大能力蒸馏到本地模型中,以应对文本图学习中的数据稀缺、隐私保护和成本问题。通过训练一个解释器模型来理解LLM的推理过程,并对学生模型进行对齐优化,在多个数据集上实现了显著的性能提升,平均提高了6.2%。
合成数据2.0秘诀曝光了!来自微软的研究人员们提出了智能体框架AgentInstruct,能够自动创建大量、多样化的合成数据。经过合成数据微调后的模型Orca-3,在多项基准上刷新了SOTA。
MIT CSAIL的研究人员发现,LLM的「内心深处」已经发展出了对现实的模拟,模型对语言和世界的理解,绝不仅仅是简单的「鹦鹉学舌」。也就说,在未来,LLM会比今天更深层地理解语言。
输出格式不同,竟然还能影响大模型发挥?!
现存的LLM是否真的有用?在工作中真实使用LLM的场景都有哪些?谷歌DeepMind科学家详细分享了他是如何「玩转」AI,帮助自己提质增效的。
T-MAC是一种创新的基于查找表(LUT)的方法,专为在CPU上高效执行低比特大型语言模型(LLMs)推理而设计,无需权重反量化,支持混合精度矩阵乘法(mpGEMM),显著降低了推理开销并提升了计算速度。
代码生成和补全任务做不完了?!
在过去的几年中,大型语言模型(Large Language Models, LLMs)在自然语言处理(NLP)领域取得了突破性的进展。这些模型不仅能够理解复杂的语境,还能够生成连贯且逻辑严谨的文本。
LLM数学水平不及小学生怎么办?CMU清华团队提出了Lean-STaR训练框架,在语言模型进行推理的每一步中都植入CoT,提升了模型的定理证明能力,成为miniF2F上的新SOTA。