
万径归于「概率」,华人学者颠覆认知!英伟达大牛力荐RL微调新作
万径归于「概率」,华人学者颠覆认知!英伟达大牛力荐RL微调新作华人学者参与的一项研究,重新确立了强化学习在LLM微调的价值,深度解释了AI训练「两阶段强化学习」的原因。某种意义上,他们的论文说明RL微调就是统计。
华人学者参与的一项研究,重新确立了强化学习在LLM微调的价值,深度解释了AI训练「两阶段强化学习」的原因。某种意义上,他们的论文说明RL微调就是统计。
当您的Agent需要规划多步骤操作以达成目标时,比如游戏策略制定或旅行安排优化等等,传统规划方法往往需要复杂的搜索算法和多轮提示,计算成本高昂且效率不佳。来自Google DeepMind和CMU的研究者提出了一个简单却非常烧脑的问题:我们是否一直在用错误的方式选择示例来引导LLM学习规划?
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用:
在前端开发领域,Vue 框架一直以其易用性和灵活性受到广大开发者的喜爱。而如今,Vue 生态在人工智能(AI)领域的应用上又迈出了重要的一步。尤雨溪近日宣布,Vue、Vite 和 Rolldown 的文档网站均已添加了llms.txt文件,这一举措旨在让大型语言模型(LLM)更方便地理解这些前端技术。
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。
你信任的AI排行榜,可能只是一场精心策划的骗局!震惊业界的Cohere Labs最新研究彻底撕破了Chatbot Arena这一所谓"黄金标准"的华丽面纱,揭露了科技巨头们如何肆无忌惮地操控评估系统、掠夺社区资源、扼杀开源创新。
大型语言模型(LLMs)在上下文知识理解方面取得了令人瞩目的成功。
该研究对 LLM 常见的失败模式贪婪性、频率偏差和知 - 行差距,进行了深入研究。
AI也会偷偷努力了?Letta和UC伯克利的研究者提出「睡眠时计算」技术,能让LLM在空闲时间提前思考,大幅提升推理效率。
颠覆LLM预训练认知:预训练token数越多,模型越难调!CMU、斯坦福、哈佛、普林斯顿等四大名校提出灾难性过度训练。