
惊雷又来了,用含义类型化提示MTP:更高效地提示LLM结构化输出,支持图片视频
惊雷又来了,用含义类型化提示MTP:更高效地提示LLM结构化输出,支持图片视频在人工智能技术快速发展的今天,大语言模型(LLM)已经展现出惊人的能力。然而,让这些模型生成规范的结构化输出仍然是一个难以攻克的技术难题。不论是在开发自动化工具、构建特定领域的解决方案,还是在进行开发工具集成时,都迫切需要LLM能够产生格式严格、内容可靠的输出。
在人工智能技术快速发展的今天,大语言模型(LLM)已经展现出惊人的能力。然而,让这些模型生成规范的结构化输出仍然是一个难以攻克的技术难题。不论是在开发自动化工具、构建特定领域的解决方案,还是在进行开发工具集成时,都迫切需要LLM能够产生格式严格、内容可靠的输出。
今年 4 月,斯坦福大学推出了一款利用大语言模型(LLM)辅助编写类维基百科文章的神器。它就是开源的 STORM,可以在三分钟左右将你输入的主题转换为长篇文章或者研究论文,并能够以 PDF 格式直接下载。
这两天,Claude 3.5 Sonnet升级版刷爆了朋友圈,满屏都是:它能像人一样操作电脑。 大语言模型(Large Language Model,LLM)能够像人一样操作电脑这件事,看起来蛮炸裂的,但在AI Agent圈子里早已经见多不怪了。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
北京大学的研究人员开发了一种新型多模态框架FakeShield,能够检测图像伪造、定位篡改区域,并提供基于像素和图像语义错误的合理解释,可以提高图像伪造检测的可解释性和泛化能力。
现如今,大型语言模型(LLM)生成的内容已经充斥了整个互联网,并且这些模型还能模仿各种类似真人的语气和行文风格,让人难以分辨眼前的文本究竟来自人类还是 AI。
TL;DR:DuoAttention 通过将大语言模型的注意力头分为检索头(Retrieval Heads,需要完整 KV 缓存)和流式头(Streaming Heads,只需固定量 KV 缓存),大幅提升了长上下文推理的效率,显著减少内存消耗、同时提高解码(Decoding)和预填充(Pre-filling)速度,同时在长短上下文任务中保持了准确率。
RAG通过纳入外部文档可以辅助LLM进行更复杂的推理,降低问题求解所需的推理深度,但由于文档噪声的存在,其提升效果可能会受限。中国人民大学的研究表明,尽管RAG可以提升LLM的推理能力,但这种提升作用并不是无限的,并且会受到文档中噪声信息的影响。通过DPrompt tuning的方法,可以在一定程度上提升LLM在面对噪声时的性能。
Maitrix.org 是由 UC San Diego, John Hopkins University, CMU, MBZUAI 等学术机构学者组成的开源组织,致力于发展大语言模型 (LLM)、世界模型 (World Model)、智能体模型 (Agent Model) 的技术以构建 AI 驱动的现实。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。