LLM超越人类时该如何对齐?谷歌用新RLHF框架解决了这个问题
LLM超越人类时该如何对齐?谷歌用新RLHF框架解决了这个问题让 LLM 在自我进化时也能保持对齐。
让 LLM 在自我进化时也能保持对齐。
斯坦福大学奥马尔(Omar)的DSPy研究团队最近更新了他们的项目文档,发了很多不错的案例,以及很多国际知名企业的DSPy用例,这些可能对您的项目有启发。
AI,LLM,模型训练,人工智能
改进KV缓存压缩,大模型推理显存瓶颈迎来新突破—— 中科大研究团队提出Ada-KV,通过自适应预算分配算法来优化KV缓存的驱逐过程,以提高推理效率。
大型语言模型在学习概念时竟然会形成令人惊讶的几何结构,比如代码和数学特征会形成一个「叶(lobe)」,类似于我们在做磁共振功能成像时看到的大脑功能性脑叶。这说明什么呢?
Ferret-UI 2 是苹果研究团队最新发表的一款先进的多模态大型语言模型(MLLM),旨在实现跨多个平台的通用用户界面(UI)理解。
来自华东师范大学、南洋理工和中科院等高校的联合研究团队提出了一种新颖的人工智能教育框架“场景-对象-评估”(SOE),旨在利用大型语言模型(LLMs)构建能够模拟人类学生行为和个体差异的虚拟学生代理(LVSA)。
近年来,大语言模型(Large Language Models, LLMs)的研究取得了重大进展,并对各个领域产生了深远影响。然而,LLMs的卓越性能来源于海量数据的大规模训练,这导致LLMs的训练成本明显高于传统模型。
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
在当前大语言模型(LLM)蓬勃发展的环境下,Prompt工程师们面临着一个两难困境:要么使用像LangChain这样功能强大但学习曲线陡峭的框架,要么选择自动化程度更高DSPy但牺牲了对提示词精确控制的工具。IBM研究院和UC Davis大学最近推出的PDL(Prompt Declaration Language,提示词声明语言)或许打破了这个困境,让AI开发者能真正拿回Prompt的控制权。