
改变LoRA的初始化方式,北大新方法PiSSA显著提升微调效果
改变LoRA的初始化方式,北大新方法PiSSA显著提升微调效果随着大模型的参数量日益增长,微调整个模型的开销逐渐变得难以接受。 为此,北京大学的研究团队提出了一种名为 PiSSA 的参数高效微调方法,在主流数据集上都超过了目前广泛使用的 LoRA 的微调效果。
随着大模型的参数量日益增长,微调整个模型的开销逐渐变得难以接受。 为此,北京大学的研究团队提出了一种名为 PiSSA 的参数高效微调方法,在主流数据集上都超过了目前广泛使用的 LoRA 的微调效果。
2022 年底,随着 ChatGPT 的爆火,人类正式进入了大模型时代。然而,训练大模型需要的时空消耗依然居高不下,给大模型的普及和发展带来了巨大困难。面对这一挑战,原先在计算机视觉领域流行的 LoRA 技术成功转型大模型 [1][2],带来了接近 2 倍的时间加速和理论最高 8 倍的空间压缩,将微调技术带进千家万户。
作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。
来看一个奇妙新解:和长度外推等方法使用KV缓存的本质不同,它用模型的参数来存储大量上下文信息。
只需一张照片,整个过程无需训练 LoRA 模型,多风格 AI 写真即刻呈现!
美国著名科技播客Latent Space对于刚刚过去的NeurIPS 2023上的精彩论文进行了一个全面的总结,回顾了多篇优秀论文,虽然没有获奖,但同样值得学界关注。
主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。
如果 AI 是一辆豪华跑车,那么 LoRA 微调技术就是让它加速的涡轮增压器。LoRA 强大到什么地步?它可以让模型的处理速度提升 300%。还记得 LCM-LoRA 的惊艳表现吗?其他模型的十步,它只需要一步就能达到相媲美的效果。
苹果M系列芯片专属的机器学习框架,开源即爆火!现在,用上这个框架,你就能直接在苹果GPU上跑70亿参数大模型、训练Transformer模型或是搞LoRA微调。
增加数据量和模型的参数量是公认的提升神经网络性能最直接的方法。目前主流的大模型的参数量已扩展至千亿级别,「大模型」越来越大的趋势还将愈演愈烈。