
CVPR2025视频生成统一评估架构,上交x斯坦福联合提出让MLLM像人类一样打分
CVPR2025视频生成统一评估架构,上交x斯坦福联合提出让MLLM像人类一样打分视频生成技术正以前所未有的速度革新着当前的视觉内容创作方式,从电影制作到广告设计,从虚拟现实到社交媒体,高质量且符合人类期望的视频生成模型正变得越来越重要。
视频生成技术正以前所未有的速度革新着当前的视觉内容创作方式,从电影制作到广告设计,从虚拟现实到社交媒体,高质量且符合人类期望的视频生成模型正变得越来越重要。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
逻辑推理是人类智能的核心能力,也是多模态大语言模型 (MLLMs) 的关键能力。随着DeepSeek-R1等具备强大推理能力的LLM的出现,研究人员开始探索如何将推理能力引入多模态大模型(MLLMs)
多模态大模型(MLLM)在静态图像上已经展现出卓越的 OCR 能力,能准确识别和理解图像中的文字内容。MME-VideoOCR 致力于系统评估并推动MLLM在视频OCR中的感知、理解和推理能力。
近年来,LLM 及其多模态扩展(MLLM)在多种任务上的推理能力不断提升。然而, 现有 MLLM 主要依赖文本作为表达和构建推理过程的媒介,即便是在处理视觉信息时也是如此 。
在文档理解领域,多模态大模型(MLLMs)正以惊人的速度进化。从基础文档图像识别到复杂文档理解,它们在扫描或数字文档基准测试(如 DocVQA、ChartQA)中表现出色,这似乎表明 MLLMs 已很好地解决了文档理解问题。然而,现有的文档理解基准存在两大核心缺陷:
多模态大模型(Multimodal Large Language Models, MLLM)正迅速崛起,从只能理解单一模态,到如今可以同时理解和生成图像、文本、音频甚至视频等多种模态。正因如此,在AI竞赛进入“下半场”之际(由最近的OpenAI研究员姚顺雨所引发的共识观点),设计科学的评估机制俨然成为决定胜负的核心关键。
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用,在训练阶段可以提供稳定的 reward,评估阶段可以选择更好的 sample 结果,甚至单独作为 evaluator。
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用:
多模态大模型(MLLMs)在视觉理解与推理等领域取得了显著成就。然而,随着解码(decoding)阶段不断生成新的 token,推理过程的计算复杂度和 GPU 显存占用逐渐增加,这导致了多模态大模型推理效率的降低。