
扩散LLM推理用上类GRPO强化学习!优于单独SFT,UCLA、Meta新框架d1开源
扩散LLM推理用上类GRPO强化学习!优于单独SFT,UCLA、Meta新框架d1开源当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
「一位顶尖科学家,有数千亿美元的资源,却仍然能把Meta搞砸了!」最近,圈内对LeCun的埋怨和批评,似乎越来越压不住了。有人批评说,Meta之所以溃败,LeCun的教条主义就是罪魁祸首。但LeCun却表示,自己尝试了20年自回归预测,彻底失败了,所以如今才给LLM判死刑!
近期,大模型智能体(Agent)的相关话题爆火 —— 不论是 Anthropic 抢先 MCP 范式的快速普及,还是 OpenAI 推出的 Agents SDK 以及谷歌最新发布的 A2A 协议,都预示了 AI Agent 的巨大潜力。
据知情人士透露,过去一年中,Meta Platforms 曾请求微软、亚马逊等公司协助承担其旗舰大语言模型 Llama 的训练成本。该想法反映出对 AI 开发成本激增日益加剧的担忧,企业对资助开源软件犹豫不决。
来自Meta和NYU的团队,刚刚提出了一种MetaQuery新方法,让多模态模型瞬间解锁多模态生成能力!令人惊讶的是,这种方法竟然如此简单,就实现了曾被认为需要MLLM微调才能具备的能力。
Llama 4被曝在大模型竞技场作弊后,重新上架了非特供版模型。但是你很可能没发现它。因为排名一下子从第2掉到了第32,要往下翻好久才能看到。
刚刚,xAI 正式上线 Grok 3 API,一次性推出4种模型,以适配不同应用场景,定价策略灵活,用户可按需选择。同日,谷歌、Anthropic等也推出新的定价策略。
今日凌晨,Meta AI 部门副总裁 Ahmad Al-Dahle 发文,回应了近日发布的 Llama 4 大模型的争议问题:对于「不同服务中模型质量参差不齐」这一问题,Ahmad Al-Dahle 解释称,由于模型一准备好就发布了,所以 Meta 的团队预计所有公开的应用实现都需要几天时间来进行优化调整,团队后续会继续进行漏洞修复工作。
Meta最新基础模型Llama 4发布36小时后,评论区居然是这个画风:
根据去年2024年7月28日Meta公司在训练大模型(Llama 3)时使用“16384 个 英伟达H100 GPU 集群”的经验,该显卡在高负载、大规模集群运行环境下容易出现以下故障点: