
RAG发展图谱:从基础检索到记忆增强,再到自适应RAG的五大范式 | RAG最新综述
RAG发展图谱:从基础检索到记忆增强,再到自适应RAG的五大范式 | RAG最新综述RAG工作发展时间线(2020年至今)。展示了RAG相关研究的三个主要领域:基础(包括RAG学习和RAG框架)、进阶和评估。关键的语言模型(GPT-3、GPT-4等)发展节点标注在时间线上。
RAG工作发展时间线(2020年至今)。展示了RAG相关研究的三个主要领域:基础(包括RAG学习和RAG框架)、进阶和评估。关键的语言模型(GPT-3、GPT-4等)发展节点标注在时间线上。
当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
还在为部署RAG系统的庞大体积和高性能门槛困扰吗?港大黄超教授团队最新推出的轻量级MiniRAG框架很好地解决了这一问题。通过优化架构设计,MiniRAG使得1.5B级别的小模型也能高效完成RAG任务,为端侧AI部署提供了更多可能性。
关于产业进展,代码辅助工具,PearAI ,https://trypear.ai/,提供了代码自动生成、智能代码预测、代码编辑聊天、代码记忆提升、智能代码搜索等功能,还内置了Perplexity、Memo等其他AI工具,这其实加剧了如cursor等同质产品的竞争。
这两天Github上有一个项目火了。可用于生产环境GraphRAG的开源UI项目kotaemon,更新不到两天后已经有6.6KStar,昨日新增1.3KStar已位居Github Trending榜首。周末抽空部署了一下,还挺简单,推荐给大家。
来自佐治亚理工学院和英伟达的两名华人学者带队提出了名为RankRAG的微调框架,简化了原本需要多个模型的复杂的RAG流水线,用微调的方法交给同一个LLM完成,结果同时实现了模型在RAG任务上的性能提升。