AI资讯新闻榜单内容搜索-RIP

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: RIP
NeurIPS 25开新坑:145万个图文对,覆盖八种主流水下理解任务

NeurIPS 25开新坑:145万个图文对,覆盖八种主流水下理解任务

NeurIPS 25开新坑:145万个图文对,覆盖八种主流水下理解任务

华中科技大学团队推出首个水下多模态大模型NAUTILUS,支持8种水下场景理解任务,并开源145万图文对的NautData数据集。模型通过视觉特征增强模块解决水下图像模糊和颜色失真问题,性能超越现有模型,恶劣环境下表现更佳。

来自主题: AI技术研报
10544 点击    2025-11-12 17:16
6666!NeurIPS满分论文来了

6666!NeurIPS满分论文来了

6666!NeurIPS满分论文来了

四个审稿人全给6分,NeurIPS唯一满分论文炸了!

来自主题: AI技术研报
10489 点击    2025-11-12 10:53
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。

来自主题: AI技术研报
6304 点击    2025-11-10 15:12
NeurIPS2025 Spotlight | RobustMerge: 多模态大模型高效微调模型合并的全新范式

NeurIPS2025 Spotlight | RobustMerge: 多模态大模型高效微调模型合并的全新范式

NeurIPS2025 Spotlight | RobustMerge: 多模态大模型高效微调模型合并的全新范式

在 AI 技术飞速发展的今天,如何高效地将多个专业模型的能力融合到一个通用模型中,是当前大模型应用面临的关键挑战。全量微调领域已经有许多开创性的工作,但是在高效微调领域,尚未有对模型合并范式清晰的指引。

来自主题: AI技术研报
7479 点击    2025-11-10 14:25
终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

大模型「灾难性遗忘」问题或将迎来突破。近日,NeurIPS 2025收录了谷歌研究院的一篇论文,其中提出一种全新的「嵌套学习(Nested Learning)」架构。实验中基于该框架的「Hope」模型在语言建模与长上下文记忆任务中超越Transformer模型,这意味着大模型正迈向具备自我改进能力的新阶段。

来自主题: AI技术研报
7504 点击    2025-11-10 09:56
NeurIPS 2025 Spotlight | 选择性知识蒸馏精准过滤:推测解码加速器AdaSPEC来了

NeurIPS 2025 Spotlight | 选择性知识蒸馏精准过滤:推测解码加速器AdaSPEC来了

NeurIPS 2025 Spotlight | 选择性知识蒸馏精准过滤:推测解码加速器AdaSPEC来了

目前,最先进的对齐方法是使用知识蒸馏(Knowledge Distillation, KD)在所有 token 上最小化 KL 散度。然而,最小化全局 KL 散度并不意味着 token 的接受率最大化。由于小模型容量受限,草稿模型往往难以完整吸收目标模型的知识,导致直接使用蒸馏方法的性能提升受限。在极限场景下,草稿模型和目标模型的巨大尺寸差异甚至可能导致训练不收敛。

来自主题: AI技术研报
8017 点击    2025-11-07 14:57
如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

大型语言模型(LLMs)正迅速成为从金融到交通等各个专业领域不可或缺的辅助决策工具。但目前LLM的“通用智能”在面对高度专业化、高风险的任务时,往往显得力不从心。

来自主题: AI技术研报
7523 点击    2025-11-07 10:52
NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

NeurIPS 2025 Spotlight | 你刷到的视频是真的么?用物理规律拆穿Sora谎言

随着生成式 AI(如 Sora)的发展,合成视频几乎可以以假乱真,带来了深度伪造与虚假信息传播的风险。现有检测方法多依赖表层伪影或数据驱动学习,难以在高质量生成视频中保持较好的泛化能力。其根本原因在于,这些方法大都未能充分利用自然视频所遵循的物理规律,挖掘自然视频的更本质的特征。

来自主题: AI技术研报
8686 点击    2025-11-06 09:39