AI营销效率战下半场:“一人市场部”从“工具赋能”走向“生态整合”
AI营销效率战下半场:“一人市场部”从“工具赋能”走向“生态整合”Xsignal AI Holo(AI全息)数据库的1-9月数据显示,市场(MAU)已自发掀起了一场“效率革命”的上半场:营销人员用脚投票,从Mailchimp等“旧势力”涌向GetResponse和“万相营造”等“效率新势力”。这证明了市场对“单点工具”效率提升的极度渴求。
Xsignal AI Holo(AI全息)数据库的1-9月数据显示,市场(MAU)已自发掀起了一场“效率革命”的上半场:营销人员用脚投票,从Mailchimp等“旧势力”涌向GetResponse和“万相营造”等“效率新势力”。这证明了市场对“单点工具”效率提升的极度渴求。
如何让一个并不巨大的开源大模型,在面对需要多步检索与复杂逻辑整合的问题时,依然像 “冷静的研究员” 那样先拆解、再查证、后归纳,最后给出可核实的结论?
游戏太多,玩家却不够了。这是海外科技媒体TechSpot在不久前发布的一篇文章中描述的情况,他们警告游戏行业可能会出现结构性错配。
从ChatGPT到DeepSeek,强化学习(Reinforcement Learning, RL)已成为大语言模型(LLM)后训练的关键一环。
一张图片包含的信息是多维的。例如下面的图 1,我们至少可以得到三个层面的信息:主体是大象,数量有两头,环境是热带稀树草原(savanna)。然而,如果由传统的表征学习方法来处理这张图片,比方说就将其送入一个在 ImageNet 上训练好的 ResNet 或者 Vision Transformer,往往得到的表征只会体现其主体信息,也就是会简单地将该图片归为大象这一类别。这显然是不合理的。
近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:
3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
近期,北京大学、哈尔滨工业大学联合 PsiBot 灵初智能提出首个自我增强的灵巧操作数据生成框架 ——DexFlyWheel。该框架仅需单条演示即可启动任务,自动生成多样化的灵巧操作数据,旨在缓解灵巧手领域长期存在的数据稀缺问题。目前已被 NeurIPS 2025 接受为 Spotlight(入选率约 3.2%)
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
“TreeSynth” 就这样起源于作者们最初的构想:“如何通过一句任务描述生成海量数据,完成模型训练?” 同时,大规模 scalibility 对合成数据的多样性提出了新的要求。