
Anthropic挖走DeepMind强化学习大牛、AlphaGo核心作者Julian Schrittwieser
Anthropic挖走DeepMind强化学习大牛、AlphaGo核心作者Julian Schrittwieser从 AlphaGo、AlphaZero 、MuZero 到 AlphaCode、AlphaTensor,再到最近的 Gemini 和 AlphaProof,Julian Schrittwieser 的工作成果似乎比他的名字更广为人知。
从 AlphaGo、AlphaZero 、MuZero 到 AlphaCode、AlphaTensor,再到最近的 Gemini 和 AlphaProof,Julian Schrittwieser 的工作成果似乎比他的名字更广为人知。
家人们,OpenAI 又上新了!推出了全新的生成式模型sCM(Simplifying Continuous-Time Consistency Models),支持视频、图像、三维模型和音频的生成。
TL;DR:DuoAttention 通过将大语言模型的注意力头分为检索头(Retrieval Heads,需要完整 KV 缓存)和流式头(Streaming Heads,只需固定量 KV 缓存),大幅提升了长上下文推理的效率,显著减少内存消耗、同时提高解码(Decoding)和预填充(Pre-filling)速度,同时在长短上下文任务中保持了准确率。
7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。
又快又准,即插即用!清华8比特量化Attention,两倍加速于FlashAttention2,各端到端任务均不掉点!
在互联网下半场,带来的最大冲击是“高获客成本+重用户体验”。
通往AGI的路径只有一条吗?实则不然。这家国产AI黑马认为,「群体智能」或许是一种最佳的尝试。他们正打破惯性思维,打造出最强AI大脑,要让世界每一台设备都有自己的智能。
现在,在 Hugging Face 中,使用打包的指令调整示例 (无需填充) 进行训练已与 Flash Attention 2 兼容,这要归功于一个 最近的 PR 以及新的 DataCollatorWithFlattening。 它可以在保持收敛质量的同时,将训练吞吐量提高多达 2 倍。继续阅读以了解详细信息!
Attention is all you need.
今年 3 月份,英伟达 CEO 黄仁勋举办了一个非常特别的活动。他邀请开创性论文《Attention Is All You Need》的作者们齐聚 GTC,畅谈生成式 AI 的未来发展方向。