AI资讯新闻榜单内容搜索-Transforme

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: Transforme
图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。

来自主题: AI技术研报
4052 点击    2024-10-14 15:42
NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。

来自主题: AI技术研报
6323 点击    2024-10-12 14:29
清华微软最新力作:用物理学革新Transformer注意力,「大海捞针」精度暴涨30%!

清华微软最新力作:用物理学革新Transformer注意力,「大海捞针」精度暴涨30%!

清华微软最新力作:用物理学革新Transformer注意力,「大海捞针」精度暴涨30%!

随着诺贝尔物理学奖颁给了「机器学习之父」Geoffrey Hinton,另一个借鉴物理学概念的模型架构也横空出世——微软清华团队的最新架构Differential Transformer,从注意力模块入手,实现了Transformer的核心能力提升。

来自主题: AI技术研报
7413 点击    2024-10-10 14:24
这篇论文非常火!差分Transformer竟能消除注意力噪声,犹如降噪耳机

这篇论文非常火!差分Transformer竟能消除注意力噪声,犹如降噪耳机

这篇论文非常火!差分Transformer竟能消除注意力噪声,犹如降噪耳机

Transformer 的强大实力已经在诸多大型语言模型(LLM)上得到了证明,但该架构远非完美,也有很多研究者致力于改进这一架构,比如机器之心曾报道过的 Reformer 和 Infini-Transformer。

来自主题: AI技术研报
6079 点击    2024-10-10 12:15
「乘法变加法」!MIT清华校友全新方法优化Transformer:Addition is All You Need

「乘法变加法」!MIT清华校友全新方法优化Transformer:Addition is All You Need

「乘法变加法」!MIT清华校友全新方法优化Transformer:Addition is All You Need

Transformer计算,竟然直接优化到乘法运算了。MIT两位华人学者近期发表的一篇论文提出:Addition is All You Need,让LLM的能耗最高降低95%。

来自主题: AI技术研报
3827 点击    2024-10-08 17:32
给机器人装上「虫脑」?非Transformer液态神经网络终于来了!MIT CSAIL负责人创业成果

给机器人装上「虫脑」?非Transformer液态神经网络终于来了!MIT CSAIL负责人创业成果

给机器人装上「虫脑」?非Transformer液态神经网络终于来了!MIT CSAIL负责人创业成果

一个受线虫启发的全新架构,三大「杯型」均能实现 SOTA 性能,资源高度受限环境也能部署。移动机器人可能更需要一个虫子的大脑。

来自主题: AI技术研报
6580 点击    2024-10-01 14:10