大模型哪里出问题、怎么修,这篇可解释性综述一次讲清
大模型哪里出问题、怎么修,这篇可解释性综述一次讲清过去几年,机制可解释性(Mechanistic Interpretability)让研究者得以在 Transformer 这一 “黑盒” 里追踪信息如何流动、表征如何形成:从单个神经元到注意力头,再到跨层电路。但在很多场景里,研究者真正关心的不只是 “模型为什么这么答”,还包括 “能不能更稳、更准、更省,更安全”。
过去几年,机制可解释性(Mechanistic Interpretability)让研究者得以在 Transformer 这一 “黑盒” 里追踪信息如何流动、表征如何形成:从单个神经元到注意力头,再到跨层电路。但在很多场景里,研究者真正关心的不只是 “模型为什么这么答”,还包括 “能不能更稳、更准、更省,更安全”。
编辑|Panda 在文生图模型的技术版图中,VAE 几乎已经成为共识。从 Stable Diffusion 到 FLUX,再到一系列扩散 Transformer,主流路线高度一致:先用 VAE 压缩视
这篇新论文提出了一种非常简单的新激活层 Derf(Dynamic erf),让「无归一化(Normalization-Free)」的 Transformer 不仅能稳定训练,还在多个设置下性能超过了带 LayerNorm 的标准 Transformer。
就在刚刚,Liquid AI 又一次在 LFM 模型上放大招。他们正式发布并开源了 LFM2.5-1.2B-Thinking,一款可完全在端侧运行的推理模型。Liquid AI 声称,该模型专门为简洁推理而训练;在生成最终答案前,会先生成内部思考轨迹;在端侧级别的低延迟条件下,实现系统化的问题求解;在工具使用、数学推理和指令遵循方面表现尤为出色。
刚刚,𝕏 平台(原 Twitter 平台)公布了全新的开源消息:已将全新的推荐算法开源,该算法由与 xAI 的 Grok 模型相同的 Transformer 架构驱动。
站在 2026 年的开端回望,LLM 的架构之争似乎进入了一个新的微妙阶段。过去几年,Transformer 架构以绝对的统治力横扫了人工智能领域,但随着算力成本的博弈和对推理效率的极致追求,挑战者们从未停止过脚步。
针对大模型长文本处理难题,Transformer架构的核心作者之一Llion Jones领导的研究团队开源了一项新技术DroPE。
深夜,梁文锋署名的DeepSeek新论文又来了。这一次,他们提出全新的Engram模块,解决了Transformer的记忆难题,让模型容量不再靠堆参数!
借鉴人类联想记忆,嵌套学习让AI在运行中构建抽象结构,超越Transformer的局限。谷歌团队强调:优化器与架构互为上下文,协同进化才能实现真正持续学习。这篇论文或成经典,开启AI从被动训练到主动进化的大门。
Transformer 已经改变了世界,但也并非完美,依然还是有竞争者,比如线性递归(Linear Recurrences)或状态空间模型(SSM)。这些新方法希望能够在保持模型质量的同时显著提升计算性能和效率。