24岁博士生造出空间AI大师G²VLM,让机器人眼明手快
24岁博士生造出空间AI大师G²VLM,让机器人眼明手快近日,24 岁的 00 后博士生胡文博和所在团队造出一款名为 G²VLM 的超级 AI 模型,它是一位拥有空间超能力的视觉语言小能手,不仅能从普通的平面图片中精准地重建出三维世界,还能像人类一样进行复杂的空间思考和空间推理。
近日,24 岁的 00 后博士生胡文博和所在团队造出一款名为 G²VLM 的超级 AI 模型,它是一位拥有空间超能力的视觉语言小能手,不仅能从普通的平面图片中精准地重建出三维世界,还能像人类一样进行复杂的空间思考和空间推理。
大家还记得Mira Murati吗?那个曾经主导ChatGPT开发的“AI女王”,OpenAI的前CTO,2024年突然离职后,让整个科技圈炸锅!短短几个月,融资20亿美元,估值飙到120亿美元,现在更传出新一轮融资目标直冲500亿美元!这速度,这手笔,简直是AI界的“神话”!而最近的重磅炸弹来了:他们的首款产品Tinker正式全面开放!不再需要等待名单,人人可用!
近日,来自引望智能与复旦大学的研究团队联合提出了一个面向自动驾驶的新一代大模型 ——Percept-WAM(Perception-Enhanced World–Awareness–Action Model)。该模型旨在在一个统一的大模型中,将「看见世界(Perception)」「理解世界(World–Awareness)」和「驱动车辆行动(Action)」真正打通,形成一条从感知到决策的完整链路。
今天我们正式发布 Jina-VLM,这是一款 2.4B 参数量的视觉语言模型(VLM),在同等规模下达到了多语言视觉问答(Multilingual VQA)任务上的 SOTA 基准。Jina-VLM 对硬件需求较低,可在普通消费级显卡或 Macbook 上流畅运行。
全球首个可大规模落地的开源原生多模态架构(Native VLM),名曰NEO。要知道,此前主流的多模态大模型,例如我们熟悉的GPT-4V、Claude 3.5等,它们的底层逻辑本质上其实玩的就是拼接。
在 Vision-Language Model 领域,提升其复杂推理能力通常依赖于耗费巨大的人工标注数据或启发式奖励。这不仅成本高昂,且难以规模化。
本文第一作者为刘禹宏,上海交通大学人工智能专业本科四年级学生,相关研究工作于上海人工智能实验室科研实习期间完成。通讯作者为王佳琦、臧宇航,在该研究工作完成期间,均担任上海人工智能实验室研究员。
视觉-语言-动作模型(VLA)在机器人操控领域展现出巨大潜力。通过赋予预训练视觉-语言模型(VLM)动作生成能力,机器人能够理解自然语言指令并在多样化场景中展现出强大的泛化能力。然而,这类模型在应对长时序或精细操作任务时,仍然存在性能下降的现象。
在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
首个系统性评估多模态大模型(VLM)交互式物理推理能力的综合基准来了。