
仅缩小视觉Token位置编码间隔,轻松让多模态大模型理解百万Token!清华大学,香港大学,上海AI Lab新突破
仅缩小视觉Token位置编码间隔,轻松让多模态大模型理解百万Token!清华大学,香港大学,上海AI Lab新突破随着语言大模型的成功,视觉 - 语言多模态大模型 (Vision-Language Multimodal Models, 简写为 VLMs) 发展迅速,但在长上下文场景下表现却不尽如人意,这一问题严重制约了多模态模型在实际应用中的潜力。
随着语言大模型的成功,视觉 - 语言多模态大模型 (Vision-Language Multimodal Models, 简写为 VLMs) 发展迅速,但在长上下文场景下表现却不尽如人意,这一问题严重制约了多模态模型在实际应用中的潜力。
最近 AI 社区很多人都在讨论 Scaling Law 是否撞墙的问题。其中,一个支持 Scaling Law 撞墙论的理由是 AI 几乎已经快要耗尽已有的高质量数据,比如有一项研究就预计,如果 LLM 保持现在的发展势头,到 2028 年左右,已有的数据储量将被全部利用完。
近年来,视觉语言基础模型(Vision Language Models, VLMs)大放异彩,在多模态理解和推理上展现出了超强能力。现在,更加酷炫的视觉语言动作模型(Vision-Language-Action Models, VLAs)来了!通过为 VLMs 加上动作预测模块,VLAs 不仅能 “看” 懂和 “说” 清,还能 “动” 起来,为机器人领域开启了新玩法!
你是否想过在自己的设备上运行自己的大型语言模型(LLMs)或视觉语言模型(VLMs)?你可能有过这样的想法,但是一想到要从头开始设置、管理环境、下载正确的模型权重,以及你的设备是否能处理这些模型的不确定性,你可能就犹豫了。
对抗攻击,特别是基于迁移的有目标攻击,可以用于评估大型视觉语言模型(VLMs)的对抗鲁棒性,从而在部署前更全面地检查潜在的安全漏洞。然而,现有的基于迁移的对抗攻击由于需要大量迭代和复杂的方法结构,导致成本较高
融合物理知识的大型视频语言模型PhysVLM,开源了! 它不仅在 PhysGame 基准上展现出最先进的性能,还在通用视频理解基准上(Video-MME, VCG)表现出领先的性能。
随着基础模型(如VLMs,例如Minimax、Qwen-V)和尖端图像生成技术(如Flux 1.1)的快速发展,我们正进入一个创造性可能性的新纪元。结合像T5这样的模型以增强对潜在空间中文本提示的理解,这些工具使得生产广告级别的关键视觉(KVs)成为可能,且具有显著的真实感。
北大等出品,首个多模态版o1开源模型来了—— 代号LLaVA-o1,基于Llama-3.2-Vision模型打造,超越传统思维链提示,实现自主“慢思考”推理。 在多模态推理基准测试中,LLaVA-o1超越其基础模型8.9%,并在性能上超越了一众开闭源模型。
一个5月份完成训练的大模型,无法对《黑神话·悟空》游戏内容相关问题给出准确回答。
在游戏和机器人研究领域,让智能体在开放世界环境中实现有效的交互,一直是令人兴奋却困难重重的挑战。