无限上下文、无限推理、无限输出,这个AI凭什么敢说"无限"?| Flowith 详细体验实测
无限上下文、无限推理、无限输出,这个AI凭什么敢说"无限"?| Flowith 详细体验实测Flowith 发布了它们最新的 Agent,Neo,这是世界上第一个能够做到无限上下文,无限推理步骤的 Agent,并且它还拥有着无限输出的能力。
Flowith 发布了它们最新的 Agent,Neo,这是世界上第一个能够做到无限上下文,无限推理步骤的 Agent,并且它还拥有着无限输出的能力。
AI不再相信人类 关于 Agent, flowith 给出了自己的答案 —— Neo
在人工智能领域,推理能力的进化已成为通向通用智能的核心挑战。近期,Reinforcement Learning with Verifiable Rewards(RLVR)范式下涌现出一批「Zero」类推理模型,摆脱了对人类显式推理示范的依赖,通过强化学习过程自我学习推理轨迹,显著减少了监督训练所需的人力成本。
最近这段时间Manus 爆火,一码难求,不妨来试试这款产品,Flowith。Flowith作为新一代AI创作工作空间,以其独特的二维画布交互方式和知识花园生态系统,正在重新定义人与AI的协作方式。本文将从产品设计理念、核心功能及应用场景等维度,深入解析这款备受瞩目的AI创作工具。
本文深入解析一项开创性研究——"Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning",该研究通过基于规则的强化学习技术显著提升了语言模型的推理能力。微软亚洲的研究团队受DeepSeek-R1成功经验的启发,利用结构化的逻辑谜题作为训练场,为模型创建了一个可以系统学习和改进推理技能的环境。
在 24 年 4 月,我们第一次得知了 Flowith 这个产品,随后便被它创新的交互模式与独特的 AI 生成工作流的 Oracle Agent 所吸引。创始人 Derek 在社交媒体上的帖子也非常振奋人心。与特工们气味相投,有种理想主义的极客风格。
本文介绍了一篇由浙江大学章国锋教授和商汤科技研究团队联合撰写的论文《StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation》。
2024 年,我花了相当一部分时间在研究多智能体系统,主要是 AutoGen,一个用于构建 AI 应用的 OSS 框架,并为此写了一本书《Multi-Agent Systems with AutoGen》。
在刚刚过去的 2024 年,OpenAI 推出了 o 系列模型。相比于以往大型语言模型,o 系列模型使用更多的计算进行更深入的「思考」,能够回答更复杂、更细致的问题。
别说什么“没数据就去标注啊,没钱标注就别做大模型啊”这种风凉话,有些人数据不足也能做大模型,是因为有野心,就能想出来稀缺数据场景下的大模型解决方案,或者整理出本文将要介绍的 "Practical Guide to Fine-tuning with Limited Data" 这样的综述。