Meta「透视」AI思维链:CRV推理诊断,准确率达 92%!
Meta「透视」AI思维链:CRV推理诊断,准确率达 92%!在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
在最近一篇来自Meta FAIR团队的论文里,研究者找到了一种前所未有的方式——他们能实时看到AI的思考过程。这项名为CRV的方法,通过替换模型内部的MLP模块,让每一步推理都变得「可见」。这不是隐喻,而是可量化的现象。Meta用它让错误检测精度提升到92.47%,也让人类第一次得以窥见AI是怎么想错的。
短视频的游戏规则,彻底被改写了!9月25日,Meta突然扔出一张新牌——Vibes。刷到的不是别人拍的,而是一条条AI秒生的视频:熊猫骑摩托、猫咪打篮球,你看完还能一键remix,立刻变成你的版本,再发到全网。创作门槛被拉到最低,人人都能拍大片。但这股狂潮,是全民狂欢,还是混乱的开始?
很疯狂,Meta AI裁员能裁到田渊栋头上,而且是整组整组的裁。田渊栋在Meta工作已超过十年,现任FAIR研究科学家总监(Research Scientist Director),他领导开发了早于AlphaGo的围棋AI“Dark Forest”
Meta开源DepthLM,首证视觉语言模型无需改架构即可媲美纯视觉模型的3D理解能力。通过视觉提示、稀疏标注等创新策略,DepthLM精准完成像素级深度估计等任务,解锁VLM多任务处理潜力,为自动驾驶、机器人等领域带来巨大前景。
Meta提出早期经验(Early Experience)让代理在无奖励下从自身经验中学习:在专家状态上采样替代动作、执行并收集未来状态,将这些真实后果当作监督信号。核心是把“自己造成的未来状态”转为可规模化的监督。
在 LLM 领域,扩大强化学习算力规模正在成为一个关键的研究范式。但要想弄清楚 RL 的 Scaling Law 具体是什么样子,还有几个关键问题悬而未决:如何 scale?scale 什么是有价值的?RL 真的能如预期般 scale 吗?
苹果又一华人AI高管被Meta挖走了!据彭博社爆料,这次被挖的是Ke Yang(杨克),负责AI搜索与问答系统,几周前刚被任命为AKI团队负责人,负责让Siri追赶上ChatGPT等主流大模型的能力。而离职消息一出,苹果AI的未来或又将添上许多变数。
2023年Meta推出SAM,随后SAM 2扩展到视频分割,性能再度突破。近日,SAM 3悄悄现身ICLR 2026盲审论文,带来全新范式——「基于概念的分割」(Segment Anything with Concepts),这预示着视觉AI正从「看见」迈向真正的「理解」。
说出概念,SAM 3 就明白你在说什么,并在所有出现的位置精确描绘出边界。 Meta 的「分割一切」再上新? 9 月 12 日,一篇匿名论文「SAM 3: SEGMENT ANYTHING WITH CONCEPTS」登陆 ICLR 2026,引发网友广泛关注。
风雨飘摇中的Meta,于昨天发布了一篇重量级论文,提出了一种被称作「早期经验」(Early Experience)的全新范式,让AI智能体「无师自通」,为突破强化学习瓶颈提供了一种新思路。