
UC伯克利等提出具身智能「动作Tokenizer」,效率飙升5倍!
UC伯克利等提出具身智能「动作Tokenizer」,效率飙升5倍!研究者提出了FAST,一种高效的动作Tokenizer。通过结合离散余弦变换(DCT)和字节对编码(BPE),FAST显著缩短了训练时间,并且能高效地学习和执行复杂任务,标志着机器人自回归Transformer训练的一个重要突破。
研究者提出了FAST,一种高效的动作Tokenizer。通过结合离散余弦变换(DCT)和字节对编码(BPE),FAST显著缩短了训练时间,并且能高效地学习和执行复杂任务,标志着机器人自回归Transformer训练的一个重要突破。
现在,打个游戏都用上Transformer了?! 老黄的DLSS进行了一波大升级,换上了基于Transformer的新大脑。 用上新模型之后,光线重建和超分辨率,效果都变得更细腻了。
Sakana AI发布了Transformer²新方法,通过奇异值微调和权重自适应策略,提高了LLM的泛化和自适应能力。新方法在文本任务上优于LoRA;即便是从未见过的任务,比如MATH、HumanEval和ARC-Challenge等,性能也都取得了提升。
Stability AI推出3D重建方法:2D图像秒变3D,还可以交互式实时编辑。新方法的原理、代码、权重、数据全公开,而且许可证宽松,可以商用。新方法采用点扩展模型生成稀疏点云,之后通过Transformer主干网络,同时处理生成的点云数据和输入图像生成网格。以后,人人都能轻松上手3D模型设计。
正如论文一作所说,「新架构 Titans 既比 Transformer 和现代线性 RNN 更有效,也比 GPT-4 等超大型模型性能更强。」
自适应 LLM 反映了神经科学和计算生物学中一个公认的原理,即大脑根据当前任务激活特定区域,并动态重组其功能网络以响应不断变化的任务需求。
「2025 年,我们可能会看到第一批 AI Agent 加入劳动力大军,并对公司的生产力产生实质性的影响。」——OpenAI CEO Sam Altman
想挑战 Transformer 的新架构有很多,来自谷歌的“正统”继承者 Titan 架构更受关注。
随着图像编辑工具和图像生成技术的快速发展,图像处理变得非常方便。然而图像在经过处理后不可避免的会留下伪影(操作痕迹),这些伪影可分为语义和非语义特征。
要做大模型领域的安卓和Linux。