AI资讯新闻榜单内容搜索-上下文

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 上下文
长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙

长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙

长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙

当今的LLM已经号称能够支持百万级别的上下文长度,这对于模型的能力来说,意义重大。但近日的两项独立研究表明,它们可能只是在吹牛,LLM实际上并不能理解这么长的内容。

来自主题: AI资讯
4981 点击    2024-07-23 16:10
如何将 LLM 的上下文扩展至百万级?

如何将 LLM 的上下文扩展至百万级?

如何将 LLM 的上下文扩展至百万级?

在2023年初,即便是当时最先进的GPT-3.5,其上下文长度也仅限于2k。然而,时至今日,1M的上下文长度已经成为衡量模型技术先进性的重要标志之一。

来自主题: AI技术研报
4825 点击    2024-07-19 10:14
哈工大提出创新迭代推理框架 DPE-MNER :充分发挥多模态表示潜力

哈工大提出创新迭代推理框架 DPE-MNER :充分发挥多模态表示潜力

哈工大提出创新迭代推理框架 DPE-MNER :充分发挥多模态表示潜力

多模态命名实体识别,作为构建多模态知识图谱的一项基础而关键任务,要求研究者整合多种模态信息以精准地从文本中提取命名实体。尽管以往的研究已经在不同层次上探索了多模态表示的整合方法,但在将这些多模态表示融合以提供丰富上下文信息、进而提升多模态命名实体识别的性能方面,它们仍显不足。

来自主题: AI技术研报
4585 点击    2024-07-02 17:35
ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

ICML 2024 | 揭示非线形Transformer在上下文学习中学习和泛化的机制

上下文学习 (in-context learning, 简写为 ICL) 已经在很多 LLM 有关的应用中展现了强大的能力,但是对其理论的分析仍然比较有限。人们依然试图理解为什么基于 Transformer 架构的 LLM 可以展现出 ICL 的能力。

来自主题: AI技术研报
4243 点击    2024-06-28 11:23
吴恩达团队新作:多模态多样本上下文学习,无需微调快速适应新任务

吴恩达团队新作:多模态多样本上下文学习,无需微调快速适应新任务

吴恩达团队新作:多模态多样本上下文学习,无需微调快速适应新任务

本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明:利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调。

来自主题: AI技术研报
9249 点击    2024-06-19 23:13
速度秒杀GPT-4o!Mistral开源首个22B代码模型破记录,支持80+编程语言

速度秒杀GPT-4o!Mistral开源首个22B代码模型破记录,支持80+编程语言

速度秒杀GPT-4o!Mistral开源首个22B代码模型破记录,支持80+编程语言

就在刚刚,法国AI初创公司Mistral发布了自家首款代码生成模型Codestral。不仅支持32K长上下文窗口以及80多种编程语言,而且还用22B的参数量取得了与70B的Llama 3相近的性能。目前,已经开放API与IDE插件供用户使用。

来自主题: AI技术研报
9673 点击    2024-05-30 15:16